浏览 248
分享
十四、OHLC K 线图
在 Matplotlib 教程中,我们将介绍如何在 Matplotlib 中创建开,高,低,关(OHLC)的 K 线图。 这些图表用于以精简形式显示时间序列股价信息。 为了实现它,我们首先需要导入一些模块:
import matplotlib.ticker as mticker
from matplotlib.finance import candlestick_ohlc
我们引入了ticker
,允许我们修改图表底部的ticker
信息。 然后我们从matplotlib.finance
模块中引入candlestick_ohlc
功能。
现在,我们需要组织我们的数据来和 matplotlib 协作。 如果你刚刚加入我们,我们得到的数据如下:
stock_price_url = 'http://chartapi.finance.yahoo.com/instrument/1.0/'+stock+'/chartdata;type=quote;range=1m/csv'
source_code = urllib.request.urlopen(stock_price_url).read().decode()
stock_data = []
split_source = source_code.split('\n')
for line in split_source:
split_line = line.split(',')
if len(split_line) == 6:
if 'values' not in line and 'labels' not in line:
stock_data.append(line)
date, closep, highp, lowp, openp, volume = np.loadtxt(stock_data,
delimiter=',',
unpack=True,
converters={0: bytespdate2num('%Y%m%d')})
现在,我们需要构建一个 Python 列表,其中每个元素都是数据。 我们可以修改我们的loadtxt
函数,使其不解构,但随后我们还是希望引用特定的数据点。 我们可以解决这个问题,但是我们最后可能只拥有两个单独的数据集。 为此,我们执行以下操作:
x = 0
y = len(date)
ohlc = []
while x < y:
append_me = date[x], openp[x], highp[x], lowp[x], closep[x], volume[x]
ohlc.append(append_me)
x+=1
有了这个,我们现在将 OHLC 数据列表存储到我们的变量ohlc
。 现在我们可以这样绘制:
candlestick_ohlc(ax1, ohlc)
图表应该是这样:
不幸的是,x
轴上的datetime
数据不是日期戳的形式。 我们可以处理它:
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
此外,红/黑着色依我看不是最好的选择。 我们应该使用绿色表示上升和红色表示下降。 为此,我们可以:
candlestick_ohlc(ax1, ohlc, width=0.4, colorup='#77d879', colordown='#db3f3f')
最后,我们可以将x
标签设置为我们想要的数量,像这样:
ax1.xaxis.set_major_locator(mticker.MaxNLocator(10))
现在,完整代码现在是这样:
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import matplotlib.ticker as mticker
from matplotlib.finance import candlestick_ohlc
import numpy as np
import urllib
import datetime as dt
def bytespdate2num(fmt, encoding='utf-8'):
strconverter = mdates.strpdate2num(fmt)
def bytesconverter(b):
s = b.decode(encoding)
return strconverter(s)
return bytesconverter
def graph_data(stock):
fig = plt.figure()
ax1 = plt.subplot2grid((1,1), (0,0))
stock_price_url = 'http://chartapi.finance.yahoo.com/instrument/1.0/'+stock+'/chartdata;type=quote;range=1m/csv'
source_code = urllib.request.urlopen(stock_price_url).read().decode()
stock_data = []
split_source = source_code.split('\n')
for line in split_source:
split_line = line.split(',')
if len(split_line) == 6:
if 'values' not in line and 'labels' not in line:
stock_data.append(line)
date, closep, highp, lowp, openp, volume = np.loadtxt(stock_data,
delimiter=',',
unpack=True,
converters={0: bytespdate2num('%Y%m%d')})
x = 0
y = len(date)
ohlc = []
while x < y:
append_me = date[x], openp[x], highp[x], lowp[x], closep[x], volume[x]
ohlc.append(append_me)
x+=1
candlestick_ohlc(ax1, ohlc, width=0.4, colorup='#77d879', colordown='#db3f3f')
for label in ax1.xaxis.get_ticklabels():
label.set_rotation(45)
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
ax1.xaxis.set_major_locator(mticker.MaxNLocator(10))
ax1.grid(True)
plt.xlabel('Date')
plt.ylabel('Price')
plt.title(stock)
plt.legend()
plt.subplots_adjust(left=0.09, bottom=0.20, right=0.94, top=0.90, wspace=0.2, hspace=0)
plt.show()
graph_data('EBAY')
结果为:
还要注意,我们从前面的教程中删除了大部分ax1
的修改。
评论列表