Fibonacci数列
发布于 2022-03-02 17:09:06
Fibonacci数列是这样定义的:
F[0] = 0
F[1] = 1
for each i ≥ 2: F[i] = F[i-1] + F[i-2]
因此,Fibonacci数列就形如:0, 1, 1, 2, 3, 5, 8, 13, ...,在Fibonacci数列中的数我们称为Fibonacci数。给你一个N,你想让其变为一个Fibonacci数,每一步你可以把当前数字X变为X-1或者X+1,现在给你一个数N求最少需要多少步可以变为Fibonacci数。
F[0] = 0
F[1] = 1
for each i ≥ 2: F[i] = F[i-1] + F[i-2]
因此,Fibonacci数列就形如:0, 1, 1, 2, 3, 5, 8, 13, ...,在Fibonacci数列中的数我们称为Fibonacci数。给你一个N,你想让其变为一个Fibonacci数,每一步你可以把当前数字X变为X-1或者X+1,现在给你一个数N求最少需要多少步可以变为Fibonacci数。
关注者
0
被浏览
16