tf.keras和tf.python.keras有什么区别?

发布于 2021-01-29 19:36:10

我遇到了严重的不兼容性问题,因为相同的代码在一个代码与另一个代码之间却发生了冲突。例如:

Github的源代码来看,这些模块及其导入看起来相当相同,tf.keras甚至从中导入也是如此tf.python.keras。在教程中,我看到两者都经常使用。例如,下面的代码将失败tf.python.keras

这是怎么回事?有什么区别,什么时候应该使用其中一个?


from tensorflow.keras.layers import Input, Dense
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Nadam
import numpy as np

ipt   = Input(shape=(4,))
out   = Dense(1, activation='sigmoid')(ipt)
model = Model(ipt, out)
model.compile(optimizer=Nadam(lr=1e-4), loss='binary_crossentropy')

X = np.random.randn(32,4)
Y = np.random.randint(0,2,(32,1))
model.train_on_batch(X,Y)

附加信息

  • CUDA 10.0.130,cuDNN 7.4.2,Python 3.7.4,Windows 10
  • tensorflowtensorflow-gpuv2.0.0和Keras 2.3.0(通过pip),其他所有通过Anaconda 3
关注者
0
被浏览
96
1 个回答
  • 面试哥
    面试哥 2021-01-29
    为面试而生,有面试问题,就找面试哥。

    从官方的TensorFlow开发人员开始,缩短了(强调我的意思):

    API导入位于软件包的根目录中。其他任何导入都只是Python,允许您访问私有程序而无需考虑良好的编码习惯。

    进口的唯一方法是

    import tensorflow as tf
    tf.keras
    

    我们也提供的支持from tensorflow.keras import,尽管它很脆弱,并且在我们继续重构时可能会中断。 不支持
    tensorflow.python或任何其他模块(包括import tensorflow_core导入
    ,并且可能会突然中断。

    我: 可以肯定的tf.python.keras是, 私有的 是为了发展,而不是供 公众 使用?

    是的,确实如此。一切tf.python都是私人的


    但是,这还不是全部。tf.python仍然是访问某些函数/类的唯一方法-
    例如tf.python.frameworktf.python.ops,都在中使用tf.keras.optimizers。但是如上所述,除非您正在“开发”(即编写自定义功能或类),否则这不会成为问题。“开箱即用”用法应该很好,永远不要碰tf.python

    请注意,这不仅是兼容性问题,而且“只要没有任何问题”,两者就 不能
    互换。例如,tf.keras使用optimizer_v2,它与tf.python.keras
    Optimizer实质上不同。

    最后,请注意,以上两个链接都以tf.python.keras-不确定而结束,但似乎tf.keras在TF
    Github中实际上并不存在(例如,无引用OptimizerV2),但是在本地安装时,它 确实
    与TF合并在tensorflow_core/python/keras/api/_v2文件夹中:

    from tensorflow import keras
    print(keras.__file__)
    from tensorflow.python import keras
    print(keras.__file__)
    
    
    
    D:\Anaconda\lib\site-packages\tensorflow_core\python\keras\api\_v2\keras\__init__.py
    D:\Anaconda\lib\site-packages\tensorflow_core\python\keras\__init__.py
    

    虽然两个共享python/文件夹,他们 tf.python-可以从它们各自的验证__init__.py


    更新
    tf.python.keras.optimizerstf.python.keras.layersvs一起tf.keras.optimizers使用,对于中型模型(代码),tf.keras.layers运行
    速度慢11.5倍 。我继续在用户代码中看到前者-将其视为警告提示。



知识点
面圈网VIP题库

面圈网VIP题库全新上线,海量真题题库资源。 90大类考试,超10万份考试真题开放下载啦

去下载看看