NumPy的数学函数是否比Python快?
我有一个由基本数学函数(abs,cosh,sinh,exp,…)组合定义的函数。
我不知道是否有差别(速度)来使用,例如, numpy.abs()
而不是abs()
?
-
计时结果如下:
lebigot@weinberg ~ % python -m timeit 'abs(3.15)' 10000000 loops, best of 3: 0.146 usec per loop lebigot@weinberg ~ % python -m timeit -s 'from numpy import abs as nabs' 'nabs(3.15)' 100000 loops, best of 3: 3.92 usec per loop
numpy.abs()
比abs()
它还处理Numpy数组要慢:它包含提供这种灵活性的其他代码。但是,Numpy在数组 上的 速度很快:
lebigot@weinberg ~ % python -m timeit -s 'a = [3.15]*1000' '[abs(x) for x in a]' 10000 loops, best of 3: 186 usec per loop lebigot@weinberg ~ % python -m timeit -s 'import numpy; a = numpy.empty(1000); a.fill(3.15)' 'numpy.abs(a)' 100000 loops, best of 3: 6.47 usec per loop
(PS:
'[abs(x) for x in a]'
在python 2.7中比慢于慢map(abs, a)
,后者快约30%,但仍然比NumPy慢得多。)因此,
numpy.abs()
对于1000个元素而言,花费的时间不会比1个单个float花费更多的时间!