从一个数组中删除另一个数组中的元素
说我有这些二维数组A和B。
如何从B中删除A中的元素。(集合论中的补语:AB)
A=np.asarray([[1,1,1], [1,1,2], [1,1,3], [1,1,4]])
B=np.asarray([[0,0,0], [1,0,2], [1,0,3], [1,0,4], [1,1,0], [1,1,1], [1,1,4]])
#output = [[1,1,2], [1,1,3]]
更准确地说,我想做这样的事情。
data = some numpy array
label = some numpy array
A = np.argwhere(label==0) #[[1 1 1], [1 1 2], [1 1 3], [1 1 4]]
B = np.argwhere(data>1.5) #[[0 0 0], [1 0 2], [1 0 3], [1 0 4], [1 1 0], [1 1 1], [1 1 4]]
out = np.argwhere(label==0 and data>1.5) #[[1 1 2], [1 1 3]]
-
基于this solution对
Find the row indexes of several values in a numpyarray
,这里是用更少的内存占用与NumPy基础的解决方案,并与大型阵列工作时,可能是有益的-dims = np.maximum(B.max(0),A.max(0))+1 out = A[~np.in1d(np.ravel_multi_index(A.T,dims),np.ravel_multi_index(B.T,dims))]
样品运行-
In [38]: A Out[38]: array([[1, 1, 1], [1, 1, 2], [1, 1, 3], [1, 1, 4]]) In [39]: B Out[39]: array([[0, 0, 0], [1, 0, 2], [1, 0, 3], [1, 0, 4], [1, 1, 0], [1, 1, 1], [1, 1, 4]]) In [40]: out Out[40]: array([[1, 1, 2], [1, 1, 3]])
在大型阵列上的运行时测试-
In [107]: def in1d_approach(A,B): ...: dims = np.maximum(B.max(0),A.max(0))+1 ...: return A[~np.in1d(np.ravel_multi_index(A.T,dims),\ ...: np.ravel_multi_index(B.T,dims))] ...: In [108]: # Setup arrays with B as large array and A contains some of B's rows ...: B = np.random.randint(0,9,(1000,3)) ...: A = np.random.randint(0,9,(100,3)) ...: A_idx = np.random.choice(np.arange(A.shape[0]),size=10,replace=0) ...: B_idx = np.random.choice(np.arange(B.shape[0]),size=10,replace=0) ...: A[A_idx] = B[B_idx] ...:
具有
broadcasting
基础解决方案的时间-In [109]: %timeit A[np.all(np.any((A-B[:, None]), axis=2), axis=0)] 100 loops, best of 3: 4.64 ms per loop # @Kasramvd's soln In [110]: %timeit A[~((A[:,None,:] == B).all(-1)).any(1)] 100 loops, best of 3: 3.66 ms per loop
基于更少内存占用量的定时解决方案-
In [111]: %timeit in1d_approach(A,B) 1000 loops, best of 3: 231 µs per loop
进一步提升性能
in1d_approach
通过将每一行视为索引元组来减少每一行。通过使用引入矩阵乘法np.dot
,我们可以更有效地完成上述操作,例如-def in1d_dot_approach(A,B): cumdims = (np.maximum(A.max(),B.max())+1)**np.arange(B.shape[1]) return A[~np.in1d(A.dot(cumdims),B.dot(cumdims))]
让我们在更大的数组上与以前的版本进行测试-
In [251]: # Setup arrays with B as large array and A contains some of B's rows ...: B = np.random.randint(0,9,(10000,3)) ...: A = np.random.randint(0,9,(1000,3)) ...: A_idx = np.random.choice(np.arange(A.shape[0]),size=10,replace=0) ...: B_idx = np.random.choice(np.arange(B.shape[0]),size=10,replace=0) ...: A[A_idx] = B[B_idx] ...: In [252]: %timeit in1d_approach(A,B) 1000 loops, best of 3: 1.28 ms per loop In [253]: %timeit in1d_dot_approach(A, B) 1000 loops, best of 3: 1.2 ms per loop