将二进制COPY表FROM与psycopg2一起使用

发布于 2021-01-29 18:42:01

我有数千万行要从多维数组文件传输到PostgreSQL数据库。我的工具是Python和psycopg2。批量插入数据的最有效方法是使用copy_from。但是,我的数据主要是32位浮点数(实数或float4),所以我宁愿不从实数→文本→实数转换。这是一个示例数据库DDL:

CREATE TABLE num_data
(
  id serial PRIMARY KEY NOT NULL,
  node integer NOT NULL,
  ts smallint NOT NULL,
  val1 real,
  val2 double precision
);

这是我在Python中使用字符串(文本)的地方:

# Just one row of data
num_row = [23253, 342, -15.336734, 2494627.949375]

import psycopg2
# Python3:
from io import StringIO
# Python2, use: from cStringIO import StringIO

conn = psycopg2.connect("dbname=mydb user=postgres")
curs = conn.cursor()

# Convert floating point numbers to text, write to COPY input
cpy = StringIO()
cpy.write('\t'.join([repr(x) for x in num_row]) + '\n')

# Insert data; database converts text back to floating point numbers
cpy.seek(0)
curs.copy_from(cpy, 'num_data', columns=('node', 'ts', 'val1', 'val2'))
conn.commit()

是否存在可以使用二进制模式运行的等效项?即,将浮点数保留为二进制?这样不仅可以保持浮点精度,而且可以更快。

(注意:要查看与示例相同的精度,请使用SET extra_float_digits='2'

关注者
0
被浏览
150
1 个回答
  • 面试哥
    面试哥 2021-01-29
    为面试而生,有面试问题,就找面试哥。

    这是Python 3的COPY FROM的二进制等效文件:

    from io import BytesIO
    from struct import pack
    import psycopg2
    
    # Two rows of data; "id" is not in the upstream data source
    # Columns: node, ts, val1, val2
    data = [(23253, 342, -15.336734, 2494627.949375),
            (23256, 348, 43.23524, 2494827.949375)]
    
    conn = psycopg2.connect("dbname=mydb user=postgres")
    curs = conn.cursor()
    
    # Determine starting value for sequence
    curs.execute("SELECT nextval('num_data_id_seq')")
    id_seq = curs.fetchone()[0]
    
    # Make a binary file object for COPY FROM
    cpy = BytesIO()
    # 11-byte signature, no flags, no header extension
    cpy.write(pack('!11sii', b'PGCOPY\n\377\r\n\0', 0, 0))
    
    # Columns: id, node, ts, val1, val2
    # Zip: (column position, format, size)
    row_format = list(zip(range(-1, 4),
                          ('i', 'i', 'h', 'f', 'd'),
                          ( 4,   4,   2,   4,   8 )))
    for row in data:
        # Number of columns/fields (always 5)
        cpy.write(pack('!h', 5))
        for col, fmt, size in row_format:
            value = (id_seq if col == -1 else row[col])
            cpy.write(pack('!i' + fmt, size, value))
        id_seq += 1  # manually increment sequence outside of database
    
    # File trailer
    cpy.write(pack('!h', -1))
    
    # Copy data to database
    cpy.seek(0)
    curs.copy_expert("COPY num_data FROM STDIN WITH BINARY", cpy)
    
    # Update sequence on database
    curs.execute("SELECT setval('num_data_id_seq', %s, false)", (id_seq,))
    conn.commit()
    

    更新资料

    我改写了上面的方法来为COPY编写文件。我在Python中的数据位于NumPy数组中,因此使用它们很有意义。这是一个data具有1M行,7列的示例:

    import psycopg2
    import numpy as np
    from struct import pack
    from io import BytesIO
    from datetime import datetime
    
    conn = psycopg2.connect("dbname=mydb user=postgres")
    curs = conn.cursor()
    
    # NumPy record array
    shape = (7, 2000, 500)
    print('Generating data with %i rows, %i columns' % (shape[1]*shape[2], shape[0]))
    
    dtype = ([('id', 'i4'), ('node', 'i4'), ('ts', 'i2')] +
             [('s' + str(x), 'f4') for x in range(shape[0])])
    data = np.empty(shape[1]*shape[2], dtype)
    data['id'] = np.arange(shape[1]*shape[2]) + 1
    data['node'] = np.tile(np.arange(shape[1]) + 1, shape[2])
    data['ts'] = np.repeat(np.arange(shape[2]) + 1, shape[1])
    data['s0'] = np.random.rand(shape[1]*shape[2]) * 100
    prv = 's0'
    for nxt in data.dtype.names[4:]:
        data[nxt] = data[prv] + np.random.rand(shape[1]*shape[2]) * 10
        prv = nxt
    

    在我的数据库中,我有两个看起来像的表:

    CREATE TABLE num_data_binary
    (
      id integer PRIMARY KEY,
      node integer NOT NULL,
      ts smallint NOT NULL,
      s0 real,
      s1 real,
      s2 real,
      s3 real,
      s4 real,
      s5 real,
      s6 real
    ) WITH (OIDS=FALSE);
    

    另一个类似的表名为num_data_text

    以下是一些简单的辅助函数,它们通过使用NumPy记录数组中的信息为COPY(文本和二进制格式)准备数据:

    def prepare_text(dat):
        cpy = BytesIO()
        for row in dat:
            cpy.write('\t'.join([repr(x) for x in row]) + '\n')
        return(cpy)
    
    def prepare_binary(dat):
        pgcopy_dtype = [('num_fields','>i2')]
        for field, dtype in dat.dtype.descr:
            pgcopy_dtype += [(field + '_length', '>i4'),
                             (field, dtype.replace('<', '>'))]
        pgcopy = np.empty(dat.shape, pgcopy_dtype)
        pgcopy['num_fields'] = len(dat.dtype)
        for i in range(len(dat.dtype)):
            field = dat.dtype.names[i]
            pgcopy[field + '_length'] = dat.dtype[i].alignment
            pgcopy[field] = dat[field]
        cpy = BytesIO()
        cpy.write(pack('!11sii', b'PGCOPY\n\377\r\n\0', 0, 0))
        cpy.write(pgcopy.tostring())  # all rows
        cpy.write(pack('!h', -1))  # file trailer
        return(cpy)
    

    这就是我使用帮助程序函数对两种COPY格式方法进行基准测试的方式:

    def time_pgcopy(dat, table, binary):
        print('Processing copy object for ' + table)
        tstart = datetime.now()
        if binary:
            cpy = prepare_binary(dat)
        else:  # text
            cpy = prepare_text(dat)
        tendw = datetime.now()
        print('Copy object prepared in ' + str(tendw - tstart) + '; ' +
              str(cpy.tell()) + ' bytes; transfering to database')
        cpy.seek(0)
        if binary:
            curs.copy_expert('COPY ' + table + ' FROM STDIN WITH BINARY', cpy)
        else:  # text
            curs.copy_from(cpy, table)
        conn.commit()
        tend = datetime.now()
        print('Database copy time: ' + str(tend - tendw))
        print('        Total time: ' + str(tend - tstart))
        return
    
    time_pgcopy(data, 'num_data_text', binary=False)
    time_pgcopy(data, 'num_data_binary', binary=True)
    

    这是最后两个time_pgcopy命令的输出:

    Processing copy object for num_data_text
    Copy object prepared in 0:01:15.288695; 84355016 bytes; transfering to database
    Database copy time: 0:00:37.929166
            Total time: 0:01:53.217861
    Processing copy object for num_data_binary
    Copy object prepared in 0:00:01.296143; 80000021 bytes; transfering to database
    Database copy time: 0:00:23.325952
            Total time: 0:00:24.622095
    

    因此,使用二进制方法,NumPy→文件和File→数据库步骤都更快。明显的区别是Python如何准备COPY文件,这对于文本来说确实很慢。通常,二进制格式会以这种格式的文本格式在2/3的时间内将其加载到数据库中。

    最后,我比较了数据库中两个表中的值,以查看数字是否不同。大约1.46%的行的column值不同s0,并且该比例的值增加到6.17%s6(可能与我使用的随机方法有关)。所有70M
    32位浮点值之间的非零绝对差值介于9.3132257e-010和7.6293945e-006之间。文本和二进制加载方法之间的这些细微差别是由于文本格式方法所需的float→text→float转换而导致精度损失。



知识点
面圈网VIP题库

面圈网VIP题库全新上线,海量真题题库资源。 90大类考试,超10万份考试真题开放下载啦

去下载看看