sklearn:TFIDF转换器:如何获取文档中给定单词的tf-idf值
我使用 sklearn 使用以下 命令 来计算文档的TFIDF(术语频率与文档频率成反比):
from sklearn.feature_extraction.text import CountVectorizer
count_vect = CountVectorizer()
X_train_counts = count_vect.fit_transform(documents)
from sklearn.feature_extraction.text import TfidfTransformer
tf_transformer = TfidfTransformer(use_idf=False).fit(X_train_counts)
X_train_tf = tf_transformer.transform(X_train_counts)
X_train_tf
是scipy.sparse
形状的矩阵(2257, 35788)
。
如何获得特定文档中单词的TF-IDF?更具体地说,如何在给定文档中获取最大TF-IDF值的单词?
-
您可以从sklean使用TfidfVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer import numpy as np from scipy.sparse.csr import csr_matrix #need this if you want to save tfidf_matrix tf = TfidfVectorizer(input='filename', analyzer='word', ngram_range=(1,6), min_df = 0, stop_words = 'english', sublinear_tf=True) tfidf_matrix = tf.fit_transform(corpus)
上面的tfidf_matix具有语料库中所有文档的TF-IDF值。这是一个很大的稀疏矩阵。现在,
feature_names = tf.get_feature_names()
这将为您提供所有标记,n-gram或单词的列表。对于语料库中的第一个文档,
doc = 0 feature_index = tfidf_matrix[doc,:].nonzero()[1] tfidf_scores = zip(feature_index, [tfidf_matrix[doc, x] for x in feature_index])
让我们打印出来
for w, s in [(feature_names[i], s) for (i, s) in tfidf_scores]: print w, s