python2.x中两幅图像的直方图匹配?
我正在尝试匹配两个图像的直方图(在MATLAB中,这是可以做到的)
使用
imhistmatch
).
标准Python库中是否有可用的等效函数?我已经
查看了OpenCV、scipy和numpy,但没有看到任何类似的功能。
-
我以前写过一个答案
这里解释如何做
图像直方图的分段线性插值
高光/中音/阴影的特定比率。
相同的基本原则是[直方图]的基础
匹配两人之间
图像。基本上,你要计算出你的源和目标的累积直方图
模板图像,然后线性插值,以找到唯一的像素值
与唯一像素的分位数最接近的模板图像
源图像中的值:import numpy as np def hist_match(source, template): """ Adjust the pixel values of a grayscale image such that its histogram matches that of a target image Arguments: ----------- source: np.ndarray Image to transform; the histogram is computed over the flattened array template: np.ndarray Template image; can have different dimensions to source Returns: ----------- matched: np.ndarray The transformed output image """ oldshape = source.shape source = source.ravel() template = template.ravel() # get the set of unique pixel values and their corresponding indices and # counts s_values, bin_idx, s_counts = np.unique(source, return_inverse=True, return_counts=True) t_values, t_counts = np.unique(template, return_counts=True) # take the cumsum of the counts and normalize by the number of pixels to # get the empirical cumulative distribution functions for the source and # template images (maps pixel value --> quantile) s_quantiles = np.cumsum(s_counts).astype(np.float64) s_quantiles /= s_quantiles[-1] t_quantiles = np.cumsum(t_counts).astype(np.float64) t_quantiles /= t_quantiles[-1] # interpolate linearly to find the pixel values in the template image # that correspond most closely to the quantiles in the source image interp_t_values = np.interp(s_quantiles, t_quantiles, t_values) return interp_t_values[bin_idx].reshape(oldshape)
For example:
from matplotlib import pyplot as plt from scipy.misc import lena, ascent source = lena() template = ascent() matched = hist_match(source, template) def ecdf(x): """convenience function for computing the empirical CDF""" vals, counts = np.unique(x, return_counts=True) ecdf = np.cumsum(counts).astype(np.float64) ecdf /= ecdf[-1] return vals, ecdf x1, y1 = ecdf(source.ravel()) x2, y2 = ecdf(template.ravel()) x3, y3 = ecdf(matched.ravel()) fig = plt.figure() gs = plt.GridSpec(2, 3) ax1 = fig.add_subplot(gs[0, 0]) ax2 = fig.add_subplot(gs[0, 1], sharex=ax1, sharey=ax1) ax3 = fig.add_subplot(gs[0, 2], sharex=ax1, sharey=ax1) ax4 = fig.add_subplot(gs[1, :]) for aa in (ax1, ax2, ax3): aa.set_axis_off() ax1.imshow(source, cmap=plt.cm.gray) ax1.set_title('Source') ax2.imshow(template, cmap=plt.cm.gray) ax2.set_title('template') ax3.imshow(matched, cmap=plt.cm.gray) ax3.set_title('Matched') ax4.plot(x1, y1 * 100, '-r', lw=3, label='Source') ax4.plot(x2, y2 * 100, '-k', lw=3, label='Template') ax4.plot(x3, y3 * 100, '--r', lw=3, label='Matched') ax4.set_xlim(x1[0], x1[-1]) ax4.set_xlabel('Pixel value') ax4.set_ylabel('Cumulative %') ax4.legend(loc=5)
对于一对RGB图像,您可以将此函数分别应用于每个图像频道。根据你想要达到的效果,你可能想要
首先将图像转换为不同的颜色空间。例如,你可以转换成HSV空间然后呢如果你想匹配亮度,就在V频道上进行匹配,但不是色调或饱和度。