如何使用Scikit-Learn包装器获得XGBoost和XGBoost的预测以进行匹配?
我是Python的XGBoost的新手,所以我很抱歉,如果答案是显而易见的,但是我尝试使用panda数据框并以Python的形式获取XGBoost,以提供与使用Scikit-
Learn包装器相同时得到的相同预测行使。到目前为止,我一直无法做到这一点。举个例子,在这里我拿波士顿数据集,转换为熊猫数据框,训练该数据集的前500个观察值,然后预测最后6个。我先使用XGBoost,然后使用Scikit-
Learn包装器和即使将模型的参数设置为相同,我也会得到不同的预测。具体而言,数组预测看起来与数组预测2完全不同(请参见下面的代码)。任何帮助将非常感激!
from sklearn import datasets
import pandas as pd
import xgboost as xgb
from xgboost.sklearn import XGBClassifier
from xgboost.sklearn import XGBRegressor
### Use the boston data as an example, train on first 500, predict last 6
boston_data = datasets.load_boston()
df_boston = pd.DataFrame(boston_data.data,columns=boston_data.feature_names)
df_boston['target'] = pd.Series(boston_data.target)
#### Code using XGBoost
Sub_train = df_boston.head(500)
target = Sub_train["target"]
Sub_train = Sub_train.drop('target', axis=1)
Sub_predict = df_boston.tail(6)
Sub_predict = Sub_predict.drop('target', axis=1)
xgtrain = xgb.DMatrix(Sub_train.as_matrix(), label=target.tolist())
xgtest = xgb.DMatrix(Sub_predict.as_matrix())
params = {'booster': 'gblinear', 'objective': 'reg:linear',
'max_depth': 2, 'learning_rate': .1, 'n_estimators': 500, 'min_child_weight': 3, 'colsample_bytree': .7,
'subsample': .8, 'gamma': 0, 'reg_alpha': 1}
model = xgb.train(dtrain=xgtrain, params=params)
predictions = model.predict(xgtest)
#### Code using Sk learn Wrapper for XGBoost
model = XGBRegressor(learning_rate =.1, n_estimators=500,
max_depth=2, min_child_weight=3, gamma=0,
subsample=.8, colsample_bytree=.7, reg_alpha=1,
objective= 'reg:linear')
target = "target"
Sub_train = df_boston.head(500)
Sub_predict = df_boston.tail(6)
Sub_predict = Sub_predict.drop('target', axis=1)
Ex_List = ['target']
predictors = [i for i in Sub_train.columns if i not in Ex_List]
model = model.fit(Sub_train[predictors],Sub_train[target])
predictions2 = model.predict(Sub_predict)
-
xgboost.train
在xgboost.XGBRegressor
接受时将忽略参数n_estimators
。在xgboost.train中,增强迭代(即n_estimators)由num_boost_round(默认值:10)控制建议
n_estimators
从提供给xgb.train
它的参数中删除并替换为num_boost_round
。因此,像这样更改您的参数:
params = {'objective': 'reg:linear', 'max_depth': 2, 'learning_rate': .1, 'min_child_weight': 3, 'colsample_bytree': .7, 'subsample': .8, 'gamma': 0, 'alpha': 1}
像这样训练xgb.train:
model = xgb.train(dtrain=xgtrain, params=params,num_boost_round=500)
您将获得相同的结果。
或者,保持xgb.train不变,并像这样更改XGBRegressor:
model = XGBRegressor(learning_rate =.1, n_estimators=10, max_depth=2, min_child_weight=3, gamma=0, subsample=.8, colsample_bytree=.7, reg_alpha=1, objective= 'reg:linear')
然后,您也将获得相同的结果。