在Python中查找日期范围重叠
发布于 2021-01-29 18:05:42
我试图找到一种基于特定列(id)在数据框中查找重叠数据范围(每行提供的开始/结束日期)的更有效方法。
数据框在“来自”列上排序
我认为有一种方法可以像我一样避免“双重”应用功能…
import pandas as pd
from datetime import datetime
df = pd.DataFrame(columns=['id','from','to'], index=range(5), \
data=[[878,'2006-01-01','2007-10-01'],
[878,'2007-10-02','2008-12-01'],
[878,'2008-12-02','2010-04-03'],
[879,'2010-04-04','2199-05-11'],
[879,'2016-05-12','2199-12-31']])
df['from'] = pd.to_datetime(df['from'])
df['to'] = pd.to_datetime(df['to'])
id from to
0 878 2006-01-01 2007-10-01
1 878 2007-10-02 2008-12-01
2 878 2008-12-02 2010-04-03
3 879 2010-04-04 2199-05-11
4 879 2016-05-12 2199-12-31
我使用“应用”功能在所有组上循环,并且在每个组中,每行使用“应用”:
def check_date_by_id(df):
df['prevFrom'] = df['from'].shift()
df['prevTo'] = df['to'].shift()
def check_date_by_row(x):
if pd.isnull(x.prevFrom) or pd.isnull(x.prevTo):
x['overlap'] = False
return x
latest_start = max(x['from'], x.prevFrom)
earliest_end = min(x['to'], x.prevTo)
x['overlap'] = int((earliest_end - latest_start).days) + 1 > 0
return x
return df.apply(check_date_by_row, axis=1).drop(['prevFrom','prevTo'], axis=1)
df.groupby('id').apply(check_date_by_id)
id from to overlap
0 878 2006-01-01 2007-10-01 False
1 878 2007-10-02 2008-12-01 False
2 878 2008-12-02 2010-04-03 False
3 879 2010-04-04 2199-05-11 False
4 879 2016-05-12 2199-12-31 True
关注者
0
被浏览
42
1 个回答
-
您可以移动
to
列并直接减去日期时间。df['overlap'] = (df['to'].shift()-df['from']) > timedelta(0)
分组时应用它
id
可能看起来像df['overlap'] = (df.groupby('id') .apply(lambda x: (x['to'].shift() - x['from']) > timedelta(0)) .reset_index(level=0, drop=True))
演示版
>>> df id from to 0 878 2006-01-01 2007-10-01 1 878 2007-10-02 2008-12-01 2 878 2008-12-02 2010-04-03 3 879 2010-04-04 2199-05-11 4 879 2016-05-12 2199-12-31 >>> df['overlap'] = (df.groupby('id') .apply(lambda x: (x['to'].shift() - x['from']) > timedelta(0)) .reset_index(level=0, drop=True)) >>> df id from to overlap 0 878 2006-01-01 2007-10-01 False 1 878 2007-10-02 2008-12-01 False 2 878 2008-12-02 2010-04-03 False 3 879 2010-04-04 2199-05-11 False 4 879 2016-05-12 2199-12-31 True