PySpark:将一个DataFrame列的值与另一个DataFrame列进行匹配

发布于 2021-01-29 18:04:43

在Pandas DataFrame中,我可以使用DataFrame.isin()函数将列值与另一列进行匹配。

例如:假设我们有一个DataFrame:

df_A = pd.DataFrame({'col1': ['A', 'B', 'C', 'B', 'C', 'D'], 
                     'col2': [1, 2, 3, 4, 5, 6]})
df_A

    col1  col2
0    A     1
1    B     2
2    C     3
3    B     4
4    C     5
5    D     6

和另一个DataFrame:

df_B = pd.DataFrame({'col1': ['C', 'E', 'D', 'C', 'F', 'G', 'H'], 
                     'col2': [10, 20, 30, 40, 50, 60, 70]})
df_B

    col1  col2
0    C    10
1    E    20
2    D    30
3    C    40
4    F    50
5    G    60
6    H    70

我可以使用.isin()的功能相匹配的列值df_B对的列值df_A

例如:

df_B[df_B['col1'].isin(df_A['col1'])]

产量:

    col1  col2
0    C    10
2    D    30
3    C    40

PySpark DataFrame中的等效操作是什么?

df_A = pd.DataFrame({'col1': ['A', 'B', 'C', 'B', 'C', 'D'], 
                     'col2': [1, 2, 3, 4, 5, 6]})
df_A = sqlContext.createDataFrame(df_A)

df_B = pd.DataFrame({'col1': ['C', 'E', 'D', 'C', 'F', 'G', 'H'], 
                     'col2': [10, 20, 30, 40, 50, 60, 70]})
df_B = sqlContext.createDataFrame(df_B)


df_B[df_B['col1'].isin(df_A['col1'])]

.isin()上面的代码给我一条错误消息:

u'resolved attribute(s) col1#9007 missing from 
col1#9012,col2#9013L in operator !Filter col1#9012 IN 
(col1#9007);;\n!Filter col1#9012 IN (col1#9007)\n+- 
LogicalRDD [col1#9012, col2#9013L]\n'
关注者
0
被浏览
238
1 个回答
  • 面试哥
    面试哥 2021-01-29
    为面试而生,有面试问题,就找面试哥。

    这种操作在spark中称为“左半联接”:

    df_B.join(df_A, ['col1'], 'leftsemi')
    


知识点
面圈网VIP题库

面圈网VIP题库全新上线,海量真题题库资源。 90大类考试,超10万份考试真题开放下载啦

去下载看看