将所有分区迭代为k个组?

发布于 2021-01-29 17:58:13

说我有一个列表L。如何获得K组所有分区上的迭代器?

示例:L = [2,3,5,7,11,13],K = 3

3组的所有可能分区的列表:

[ [ 2 ], [ 3, 5], [ 7,11,13] ]
[ [ 2,3,5 ], [ 7, 11], [ 13] ]
[ [ 3, 11 ], [ 5, 7], [ 2, 13] ]
[ [ 3 ], [ 11 ], [ 5, 7, 2, 13] ]
etc...

===更新===

我正在研究一个似乎可行的解决方案,所以我只复制粘贴它即可

# -*- coding: utf-8 -*-

import itertools

# return ( list1 - list0 )
def l1_sub_l0( l1, l0 ) :
    """Substract two lists"""
    #
    copy_l1 = list( l1 )
    copy_l0 = list( l0 )

    #
    for xx in l0 :
        #
        if copy_l1.count( xx ) > 0 :
            #
            copy_l1.remove( xx )
            copy_l0.remove( xx )

    #
    return [ copy_l1, copy_l0 ]


#
def gen_group_len( n, k ) :
    """Generate all possible group sizes"""

    # avoid doubles
    stop_list = []
    #
    for t in itertools.combinations_with_replacement( xrange( 1, n - 1 ), k - 1 ) :
        #
        last_n = n - sum( t )

        # valid group size
        if last_n  >= 1 :
            res = tuple( sorted( t + ( last_n, ) ) )
            #
            if res not in stop_list :
                yield res
                stop_list.append( res )


# group_len = (1, 1, 3)

def gen( group_len, my_list ) :
    """Generate all possible partitions of all possible group sizes"""

    #
    if len( group_len ) == 1 :
        yield ( tuple( my_list ), )

    #
    else :

        # need for a stop list if 2 groups of same size
        stop_list = []

        #
        for t in itertools.combinations( my_list, group_len[ 0 ] ) :
            #
            reduced_list = l1_sub_l0( my_list, t )[ 0 ]

            #
            for t2 in gen( group_len[ 1: ], reduced_list ) :
                #
                tmp = set( ( t, t2[ 0 ] ) )
                #
                if tmp not in stop_list :
                    yield ( t, ) + t2
                    # avoid doing same thing twice
                    if group_len[ 1 ] == group_len[ 0 ] :
                        stop_list.append( tmp )


#
my_list = [ 3,5,7,11,13 ]
n = len( my_list )
k = 3

#
group_len_list = list( gen_group_len( n, k ) )
print "for %i elements, %i configurations of group sizes" % ( n, len(  group_len_list ) )
print group_len_list

#
for group_len in group_len_list :
    #
    print "group sizes", group_len
    #
    for x in gen( group_len, my_list ) :
        print x
    #
    print "==="

输出:

for 5 elements, 2 configurations of group sizes
[(1, 1, 3), (1, 2, 2)]
group sizes (1, 1, 3)
((3,), (5,), (7, 11, 13))
((3,), (7,), (5, 11, 13))
((3,), (11,), (5, 7, 13))
((3,), (13,), (5, 7, 11))
((5,), (7,), (3, 11, 13))
((5,), (11,), (3, 7, 13))
((5,), (13,), (3, 7, 11))
((7,), (11,), (3, 5, 13))
((7,), (13,), (3, 5, 11))
((11,), (13,), (3, 5, 7))
===
group sizes (1, 2, 2)
((3,), (5, 7), (11, 13))
((3,), (5, 11), (7, 13))
((3,), (5, 13), (7, 11))
((5,), (3, 7), (11, 13))
((5,), (3, 11), (7, 13))
((5,), (3, 13), (7, 11))
((7,), (3, 5), (11, 13))
((7,), (3, 11), (5, 13))
((7,), (3, 13), (5, 11))
((11,), (3, 5), (7, 13))
((11,), (3, 7), (5, 13))
((11,), (3, 13), (5, 7))
((13,), (3, 5), (7, 11))
((13,), (3, 7), (5, 11))
((13,), (3, 11), (5, 7))
===
关注者
0
被浏览
52
1 个回答
  • 面试哥
    面试哥 2021-01-29
    为面试而生,有面试问题,就找面试哥。

    这可行,尽管它可能超级无效(我将它们全部排序以避免重复计算):

    def clusters(l, K):
        if l:
            prev = None
            for t in clusters(l[1:], K):
                tup = sorted(t)
                if tup != prev:
                    prev = tup
                    for i in xrange(K):
                        yield tup[:i] + [[l[0]] + tup[i],] + tup[i+1:]
        else:
            yield [[] for _ in xrange(K)]
    

    它还返回空簇,因此您可能希望将其包装起来以便仅获取非空簇:

    def neclusters(l, K):
        for c in clusters(l, K):
            if all(x for x in c): yield c
    

    计数只是为了检查:

    def kamongn(n, k):
        res = 1
        for x in xrange(n-k, n):
            res *= x + 1
        for x in xrange(k):
            res /= x + 1
        return res
    
    def Stirling(n, k):
        res = 0
        for j in xrange(k + 1):
            res += (-1)**(k-j) * kamongn(k, j) * j ** n
        for x in xrange(k):
            res /= x + 1
        return res
    
    >>> sum(1 for _ in neclusters([2,3,5,7,11,13], K=3)) == Stirling(len([2,3,5,7,11,13]), k=3)
    True
    

    有用 !

    输出:

    >>> clust = neclusters([2,3,5,7,11,13], K=3)
    >>> [clust.next() for _ in xrange(5)]
    [[[2, 3, 5, 7], [11], [13]], [[3, 5, 7], [2, 11], [13]], [[3, 5, 7], [11], [2, 13]], [[2, 3, 11], [5, 7], [13]], [[3, 11], [2, 5, 7], [13]]]
    


知识点
面圈网VIP题库

面圈网VIP题库全新上线,海量真题题库资源。 90大类考试,超10万份考试真题开放下载啦

去下载看看