用于TensorFlow的SSIM / MS-SSIM
TensorFlow* 是否有 SSIM 甚至 MS-SSIM 实现? *
SSIM( 结构相似性指标度量 )是一种度量图像质量或图像相似性的度量。它受到人类感知的启发,根据几篇论文,与l1 /
l2相比,它的损失函数要好得多。例如,请参阅用于图像处理的神经网络的损失函数。
到目前为止,我在TensorFlow中找不到实现。在尝试自己通过从C ++或python代码(例如Github:VQMT /
SSIM)移植来完成此操作之后,我陷入了将高斯模糊应用于TensorFlow中的图像之类的方法。
有人已经尝试过自己实施它吗?
-
深入研究其他python实现之后,我终于可以在TensorFlow中实现一个正在运行的示例:
import tensorflow as tf import numpy as np def _tf_fspecial_gauss(size, sigma): """Function to mimic the 'fspecial' gaussian MATLAB function """ x_data, y_data = np.mgrid[-size//2 + 1:size//2 + 1, -size//2 + 1:size//2 + 1] x_data = np.expand_dims(x_data, axis=-1) x_data = np.expand_dims(x_data, axis=-1) y_data = np.expand_dims(y_data, axis=-1) y_data = np.expand_dims(y_data, axis=-1) x = tf.constant(x_data, dtype=tf.float32) y = tf.constant(y_data, dtype=tf.float32) g = tf.exp(-((x**2 + y**2)/(2.0*sigma**2))) return g / tf.reduce_sum(g) def tf_ssim(img1, img2, cs_map=False, mean_metric=True, size=11, sigma=1.5): window = _tf_fspecial_gauss(size, sigma) # window shape [size, size] K1 = 0.01 K2 = 0.03 L = 1 # depth of image (255 in case the image has a differnt scale) C1 = (K1*L)**2 C2 = (K2*L)**2 mu1 = tf.nn.conv2d(img1, window, strides=[1,1,1,1], padding='VALID') mu2 = tf.nn.conv2d(img2, window, strides=[1,1,1,1],padding='VALID') mu1_sq = mu1*mu1 mu2_sq = mu2*mu2 mu1_mu2 = mu1*mu2 sigma1_sq = tf.nn.conv2d(img1*img1, window, strides=[1,1,1,1],padding='VALID') - mu1_sq sigma2_sq = tf.nn.conv2d(img2*img2, window, strides=[1,1,1,1],padding='VALID') - mu2_sq sigma12 = tf.nn.conv2d(img1*img2, window, strides=[1,1,1,1],padding='VALID') - mu1_mu2 if cs_map: value = (((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)* (sigma1_sq + sigma2_sq + C2)), (2.0*sigma12 + C2)/(sigma1_sq + sigma2_sq + C2)) else: value = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)* (sigma1_sq + sigma2_sq + C2)) if mean_metric: value = tf.reduce_mean(value) return value def tf_ms_ssim(img1, img2, mean_metric=True, level=5): weight = tf.constant([0.0448, 0.2856, 0.3001, 0.2363, 0.1333], dtype=tf.float32) mssim = [] mcs = [] for l in range(level): ssim_map, cs_map = tf_ssim(img1, img2, cs_map=True, mean_metric=False) mssim.append(tf.reduce_mean(ssim_map)) mcs.append(tf.reduce_mean(cs_map)) filtered_im1 = tf.nn.avg_pool(img1, [1,2,2,1], [1,2,2,1], padding='SAME') filtered_im2 = tf.nn.avg_pool(img2, [1,2,2,1], [1,2,2,1], padding='SAME') img1 = filtered_im1 img2 = filtered_im2 # list to tensor of dim D+1 mssim = tf.pack(mssim, axis=0) mcs = tf.pack(mcs, axis=0) value = (tf.reduce_prod(mcs[0:level-1]**weight[0:level-1])* (mssim[level-1]**weight[level-1])) if mean_metric: value = tf.reduce_mean(value) return value
这是如何运行它:
import numpy as np import tensorflow as tf from skimage import data, img_as_float image = data.camera() img = img_as_float(image) rows, cols = img.shape noise = np.ones_like(img) * 0.2 * (img.max() - img.min()) noise[np.random.random(size=noise.shape) > 0.5] *= -1 img_noise = img + noise ## TF CALC START BATCH_SIZE = 1 CHANNELS = 1 image1 = tf.placeholder(tf.float32, shape=[rows, cols]) image2 = tf.placeholder(tf.float32, shape=[rows, cols]) def image_to_4d(image): image = tf.expand_dims(image, 0) image = tf.expand_dims(image, -1) return image image4d_1 = image_to_4d(image1) image4d_2 = image_to_4d(image2) ssim_index = tf_ssim(image4d_1, image4d_2) msssim_index = tf_ms_ssim(image4d_1, image4d_2) with tf.Session() as sess: sess.run(tf.initialize_all_variables()) tf_ssim_none = sess.run(ssim_index, feed_dict={image1: img, image2: img}) tf_ssim_noise = sess.run(ssim_index, feed_dict={image1: img, image2: img_noise}) tf_msssim_none = sess.run(msssim_index, feed_dict={image1: img, image2: img}) tf_msssim_noise = sess.run(msssim_index, feed_dict={image1: img, image2: img_noise}) ###TF CALC END print('tf_ssim_none', tf_ssim_none) print('tf_ssim_noise', tf_ssim_noise) print('tf_msssim_none', tf_msssim_none) print('tf_msssim_noise', tf_msssim_noise)
如果发现一些错误,请告诉我:)
编辑: 此实现仅支持灰度图像