最小化Tensorflow中一个变量的功能
我是Tensorflow的新手,我想知道是否可以使用Tensorflow最小化一个变量的函数。
例如,我们可以使用Tensorflow通过初始猜测(例如x = 1)最小化2 * x ^ 2-5 ^ x + 4吗?
我正在尝试以下方法:
import tensorflow as tf
import numpy as np
X = tf.placeholder(tf.float32, shape = ())
xvar = tf.Variable(np.random.randn())
f = 2*mul(X,X) - 5*X + 4
opt = tf.train.GradientDescentOptimizer(0.5).minimize(f)
with tf.Session() as sess:
tf.global_variables_initializer().run()
y = sess.run(opt, feed_dict = {X : 5.0}) #initial guess = 5.0
print(y)
但这会产生以下错误:
ValueError: No gradients provided for any variable, check your graph for ops that do not support gradients, between variables
请帮助我了解我在这里做错了什么。
-
如果要最小化单个参数,则可以执行以下操作(由于要尝试训练参数,因此我避免使用占位符-占位符通常用于超参数和输入,不被视为可训练参数):
import tensorflow as tf x = tf.Variable(10.0, trainable=True) f_x = 2 * x* x - 5 *x + 4 loss = f_x opt = tf.train.GradientDescentOptimizer(0.1).minimize(f_x) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(100): print(sess.run([x,loss])) sess.run(opt)
这将输出以下对(x,损耗)对的列表:
[10.0, 154.0] [6.5, 56.0] [4.4000001, 20.720001] [3.1400001, 8.0192013] [2.3840001, 3.4469128] [1.9304, 1.8008881] [1.65824, 1.2083197] [1.494944, 0.99499512] [1.3969663, 0.91819811] [1.3381798, 0.89055157] [1.3029079, 0.88059855] [1.2817447, 0.87701511] [1.2690468, 0.87572551] [1.2614281, 0.87526155] [1.2568569, 0.87509394] [1.2541142, 0.87503386] [1.2524685, 0.87501216] [1.2514811, 0.87500429] [1.2508886, 0.87500143] [1.2505331, 0.87500048] [1.2503198, 0.875] [1.2501919, 0.87500024] [1.2501152, 0.87499976] [1.2500691, 0.875] [1.2500415, 0.875] [1.2500249, 0.87500024] [1.2500149, 0.87500024] [1.2500089, 0.875] [1.2500054, 0.87500024] [1.2500032, 0.875] [1.2500019, 0.875] [1.2500012, 0.87500024] [1.2500007, 0.87499976] [1.2500005, 0.875] [1.2500002, 0.87500024] [1.2500001, 0.87500024] [1.2500001, 0.87500024] [1.2500001, 0.87500024] [1.2500001, 0.87500024] [1.2500001, 0.87500024] [1.2500001, 0.87500024] [1.2500001, 0.87500024] [1.2500001, 0.87500024] [1.2500001, 0.87500024] [1.2500001, 0.87500024] [1.2500001, 0.87500024] [1.2500001, 0.87500024] [1.2500001, 0.87500024] [1.2500001, 0.87500024] [1.2500001, 0.87500024]