加快内核估计的采样

发布于 2021-01-29 17:31:47

这是MWE我正在使用的更大的代码。基本上,它对位于某个阈值以下的所有值在KDE(内核密度估计)上执行蒙特卡洛积分(在此问题处建议使用积分方法BTW:积分2D内核密度估计。

import numpy as np
from scipy import stats
import time

# Generate some random two-dimensional data:
def measure(n):
    "Measurement model, return two coupled measurements."
    m1 = np.random.normal(size=n)
    m2 = np.random.normal(scale=0.5, size=n)
    return m1+m2, m1-m2

# Get data.
m1, m2 = measure(20000)
# Define limits.
xmin = m1.min()
xmax = m1.max()
ymin = m2.min()
ymax = m2.max()

# Perform a kernel density estimate on the data.
x, y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
values = np.vstack([m1, m2])
kernel = stats.gaussian_kde(values)

# Define point below which to integrate the kernel.
x1, y1 = 0.5, 0.5

# Get kernel value for this point.
tik = time.time()
iso = kernel((x1,y1))
print 'iso: ', time.time()-tik

# Sample from KDE distribution (Monte Carlo process).
tik = time.time()
sample = kernel.resample(size=1000)
print 'resample: ', time.time()-tik

# Filter the sample leaving only values for which
# the kernel evaluates to less than what it does for
# the (x1, y1) point defined above.
tik = time.time()
insample = kernel(sample) < iso
print 'filter/sample: ', time.time()-tik

# Integrate for all values below iso.
tik = time.time()
integral = insample.sum() / float(insample.shape[0])
print 'integral: ', time.time()-tik

输出看起来像这样:

iso:  0.00259208679199
resample:  0.000817060470581
filter/sample:  2.10829401016
integral:  4.2200088501e-05

显然,这意味着 filter / sample 调用几乎占用了代码运行的所有时间。我必须反复运行此代码块数千次,这样它才能花很多时间。

有什么方法可以加快过滤/采样过程吗?


这是将MWEOphion的多线程解决方案写入其中的实际代码的真实程度:

import numpy as np
from scipy import stats
from multiprocessing import Pool

def kde_integration(m_list):

    m1, m2 = [], []
    for item in m_list:
        # Color data.
        m1.append(item[0])
        # Magnitude data.
        m2.append(item[1])

    # Define limits.
    xmin, xmax = min(m1), max(m1)
    ymin, ymax = min(m2), max(m2)

    # Perform a kernel density estimate on the data:
    x, y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
    values = np.vstack([m1, m2])
    kernel = stats.gaussian_kde(values)

    out_list = []

    for point in m_list:

        # Compute the point below which to integrate.
        iso = kernel((point[0], point[1]))

        # Sample KDE distribution
        sample = kernel.resample(size=1000)

        #Create definition.
        def calc_kernel(samp):
            return kernel(samp)

        #Choose number of cores and split input array.
        cores = 4
        torun = np.array_split(sample, cores, axis=1)

        #Calculate
        pool = Pool(processes=cores)
        results = pool.map(calc_kernel, torun)

        #Reintegrate and calculate results
        insample_mp = np.concatenate(results) < iso

        # Integrate for all values below iso.
        integral = insample_mp.sum() / float(insample_mp.shape[0])

        out_list.append(integral)

    return out_list


# Generate some random two-dimensional data:
def measure(n):
    "Measurement model, return two coupled measurements."
    m1 = np.random.normal(size=n)
    m2 = np.random.normal(scale=0.5, size=n)
    return m1+m2, m1-m2

# Create list to pass.
m_list = []
for i in range(60):
    m1, m2 = measure(5)
    m_list.append(m1.tolist())
    m_list.append(m2.tolist())

# Call KDE integration function.
print 'Integral result: ', kde_integration(m_list)

Ophion 提供的解决方案在我提供的原始代码上效果很好,但是在此版本中失败并出现以下错误:

Integral result: Exception in thread Thread-3:
Traceback (most recent call last):
  File "/usr/lib/python2.7/threading.py", line 551, in __bootstrap_inner
    self.run()
  File "/usr/lib/python2.7/threading.py", line 504, in run
    self.__target(*self.__args, **self.__kwargs)
  File "/usr/lib/python2.7/multiprocessing/pool.py", line 319, in _handle_tasks
    put(task)
PicklingError: Can't pickle <type 'function'>: attribute lookup __builtin__.function failed

我尝试过移动该calc_kernel函数,因为这个问题的答案之一:多处理:如何在类中定义的函数上使用Pool.map?声明 “给map()的函数必须可以通过模块的导入来访问”
;但我仍然无法使此代码正常工作。

任何帮助将不胜感激。


加2

实施 Ophion的 建议以删除该calc_kernel功能,只需使用以下命令即可:

results = pool.map(kernel, torun)

可以摆脱,PicklingError但是现在我看到,如果我创建的首字母m_list超过62-63个左右,则会出现此错误:

Traceback (most recent call last):
  File "~/gauss_kde_temp.py", line 67, in <module>
    print 'Integral result: ', kde_integration(m_list)
  File "~/gauss_kde_temp.py", line 38, in kde_integration
    pool = Pool(processes=cores)
  File "/usr/lib/python2.7/multiprocessing/__init__.py", line 232, in Pool
    return Pool(processes, initializer, initargs, maxtasksperchild)
  File "/usr/lib/python2.7/multiprocessing/pool.py", line 161, in __init__
    self._result_handler.start()
  File "/usr/lib/python2.7/threading.py", line 494, in start
    _start_new_thread(self.__bootstrap, ())
thread.error: can't start new thread

由于我在此代码的实际实现中的实际列表最多可以包含2000个项目,因此此问题使该代码不可用。行38是这个:

pool = Pool(processes=cores)

因此,显然与我使用的内核数量有关吗?

Python中的此问题“无法启动新的线程错误”建议使用:

threading.active_count()

当出现错误时检查我要执行的线程数。我检查了一下,当它到达374线程时总是崩溃。如何解决此问题?

关注者
0
被浏览
49
1 个回答
  • 面试哥
    面试哥 2021-01-29
    为面试而生,有面试问题,就找面试哥。

    加快速度的最简单方法可能是并行化kernel(sample)

    采取以下代码片段:

    tik = time.time()
    insample = kernel(sample) < iso
    print 'filter/sample: ', time.time()-tik
    #filter/sample:  1.94065904617
    

    更改为使用multiprocessing

    from multiprocessing import Pool
    tik = time.time()
    
    #Create definition.
    def calc_kernel(samp):
        return kernel(samp)
    
    #Choose number of cores and split input array.
    cores = 4
    torun = np.array_split(sample, cores, axis=1)
    
    #Calculate
    pool = Pool(processes=cores)
    results = pool.map(calc_kernel, torun)
    
    #Reintegrate and calculate results
    insample_mp = np.concatenate(results) < iso
    
    print 'multiprocessing filter/sample: ', time.time()-tik
    #multiprocessing filter/sample:  0.496874094009
    

    仔细检查他们是否返回相同的答案:

    print np.all(insample==insample_mp)
    #True
    

    在4核上提高了3.9倍。不知道您在运行什么,但是在大约6个处理器之后,您输入的数组大小不足以获取可观的收益。例如,使用20个处理器,其速度仅快5.8倍。



知识点
面圈网VIP题库

面圈网VIP题库全新上线,海量真题题库资源。 90大类考试,超10万份考试真题开放下载啦

去下载看看