加快内核估计的采样
这是MWE
我正在使用的更大的代码。基本上,它对位于某个阈值以下的所有值在KDE(内核密度估计)上执行蒙特卡洛积分(在此问题处建议使用积分方法BTW:积分2D内核密度估计。
import numpy as np
from scipy import stats
import time
# Generate some random two-dimensional data:
def measure(n):
"Measurement model, return two coupled measurements."
m1 = np.random.normal(size=n)
m2 = np.random.normal(scale=0.5, size=n)
return m1+m2, m1-m2
# Get data.
m1, m2 = measure(20000)
# Define limits.
xmin = m1.min()
xmax = m1.max()
ymin = m2.min()
ymax = m2.max()
# Perform a kernel density estimate on the data.
x, y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
values = np.vstack([m1, m2])
kernel = stats.gaussian_kde(values)
# Define point below which to integrate the kernel.
x1, y1 = 0.5, 0.5
# Get kernel value for this point.
tik = time.time()
iso = kernel((x1,y1))
print 'iso: ', time.time()-tik
# Sample from KDE distribution (Monte Carlo process).
tik = time.time()
sample = kernel.resample(size=1000)
print 'resample: ', time.time()-tik
# Filter the sample leaving only values for which
# the kernel evaluates to less than what it does for
# the (x1, y1) point defined above.
tik = time.time()
insample = kernel(sample) < iso
print 'filter/sample: ', time.time()-tik
# Integrate for all values below iso.
tik = time.time()
integral = insample.sum() / float(insample.shape[0])
print 'integral: ', time.time()-tik
输出看起来像这样:
iso: 0.00259208679199
resample: 0.000817060470581
filter/sample: 2.10829401016
integral: 4.2200088501e-05
显然,这意味着 filter / sample 调用几乎占用了代码运行的所有时间。我必须反复运行此代码块数千次,这样它才能花很多时间。
有什么方法可以加快过滤/采样过程吗?
加
这是将MWE
Ophion的多线程解决方案写入其中的实际代码的真实程度:
import numpy as np
from scipy import stats
from multiprocessing import Pool
def kde_integration(m_list):
m1, m2 = [], []
for item in m_list:
# Color data.
m1.append(item[0])
# Magnitude data.
m2.append(item[1])
# Define limits.
xmin, xmax = min(m1), max(m1)
ymin, ymax = min(m2), max(m2)
# Perform a kernel density estimate on the data:
x, y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
values = np.vstack([m1, m2])
kernel = stats.gaussian_kde(values)
out_list = []
for point in m_list:
# Compute the point below which to integrate.
iso = kernel((point[0], point[1]))
# Sample KDE distribution
sample = kernel.resample(size=1000)
#Create definition.
def calc_kernel(samp):
return kernel(samp)
#Choose number of cores and split input array.
cores = 4
torun = np.array_split(sample, cores, axis=1)
#Calculate
pool = Pool(processes=cores)
results = pool.map(calc_kernel, torun)
#Reintegrate and calculate results
insample_mp = np.concatenate(results) < iso
# Integrate for all values below iso.
integral = insample_mp.sum() / float(insample_mp.shape[0])
out_list.append(integral)
return out_list
# Generate some random two-dimensional data:
def measure(n):
"Measurement model, return two coupled measurements."
m1 = np.random.normal(size=n)
m2 = np.random.normal(scale=0.5, size=n)
return m1+m2, m1-m2
# Create list to pass.
m_list = []
for i in range(60):
m1, m2 = measure(5)
m_list.append(m1.tolist())
m_list.append(m2.tolist())
# Call KDE integration function.
print 'Integral result: ', kde_integration(m_list)
Ophion 提供的解决方案在我提供的原始代码上效果很好,但是在此版本中失败并出现以下错误:
Integral result: Exception in thread Thread-3:
Traceback (most recent call last):
File "/usr/lib/python2.7/threading.py", line 551, in __bootstrap_inner
self.run()
File "/usr/lib/python2.7/threading.py", line 504, in run
self.__target(*self.__args, **self.__kwargs)
File "/usr/lib/python2.7/multiprocessing/pool.py", line 319, in _handle_tasks
put(task)
PicklingError: Can't pickle <type 'function'>: attribute lookup __builtin__.function failed
我尝试过移动该calc_kernel
函数,因为这个问题的答案之一:多处理:如何在类中定义的函数上使用Pool.map?声明 “给map()的函数必须可以通过模块的导入来访问”
;但我仍然无法使此代码正常工作。
任何帮助将不胜感激。
加2
实施 Ophion的 建议以删除该calc_kernel
功能,只需使用以下命令即可:
results = pool.map(kernel, torun)
可以摆脱,PicklingError
但是现在我看到,如果我创建的首字母m_list
超过62-63个左右,则会出现此错误:
Traceback (most recent call last):
File "~/gauss_kde_temp.py", line 67, in <module>
print 'Integral result: ', kde_integration(m_list)
File "~/gauss_kde_temp.py", line 38, in kde_integration
pool = Pool(processes=cores)
File "/usr/lib/python2.7/multiprocessing/__init__.py", line 232, in Pool
return Pool(processes, initializer, initargs, maxtasksperchild)
File "/usr/lib/python2.7/multiprocessing/pool.py", line 161, in __init__
self._result_handler.start()
File "/usr/lib/python2.7/threading.py", line 494, in start
_start_new_thread(self.__bootstrap, ())
thread.error: can't start new thread
由于我在此代码的实际实现中的实际列表最多可以包含2000个项目,因此此问题使该代码不可用。行38
是这个:
pool = Pool(processes=cores)
因此,显然与我使用的内核数量有关吗?
Python中的此问题“无法启动新的线程错误”建议使用:
threading.active_count()
当出现错误时检查我要执行的线程数。我检查了一下,当它到达374
线程时总是崩溃。如何解决此问题?
-
加快速度的最简单方法可能是并行化
kernel(sample)
:采取以下代码片段:
tik = time.time() insample = kernel(sample) < iso print 'filter/sample: ', time.time()-tik #filter/sample: 1.94065904617
更改为使用
multiprocessing
:from multiprocessing import Pool tik = time.time() #Create definition. def calc_kernel(samp): return kernel(samp) #Choose number of cores and split input array. cores = 4 torun = np.array_split(sample, cores, axis=1) #Calculate pool = Pool(processes=cores) results = pool.map(calc_kernel, torun) #Reintegrate and calculate results insample_mp = np.concatenate(results) < iso print 'multiprocessing filter/sample: ', time.time()-tik #multiprocessing filter/sample: 0.496874094009
仔细检查他们是否返回相同的答案:
print np.all(insample==insample_mp) #True
在4核上提高了3.9倍。不知道您在运行什么,但是在大约6个处理器之后,您输入的数组大小不足以获取可观的收益。例如,使用20个处理器,其速度仅快5.8倍。