如何使用rowspan和colspan解析表
首先,我阅读了使用rowspan和colspan解析表的信息。我什至回答了这个问题。在将此标记为重复之前,请先阅读。
<table border="1">
<tr>
<th>A</th>
<th>B</th>
</tr>
<tr>
<td rowspan="2">C</td>
<td rowspan="1">D</td>
</tr>
<tr>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>G</td>
<td>H</td>
</tr>
</table>
它将呈现为
+---+---+---+
| A | B | |
+---+---+ |
| | D | |
+ C +---+---+
| | E | F |
+---+---+---+
| G | H | |
+---+---+---+
<table border="1">
<tr>
<th>A</th>
<th>B</th>
</tr>
<tr>
<td rowspan="2">C</td>
<td rowspan="2">D</td>
</tr>
<tr>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>G</td>
<td>H</td>
</tr>
</table>
但是,这将像这样渲染。
+---+---+-------+
| A | B | |
+---+---+-------+
| | | |
| C | D +---+---+
| | | E | F |
+---+---+---+---+
| G | H | |
+---+---+---+---+
我以前回答的代码只能解析具有第一行中定义的所有列的表。
def table_to_2d(table_tag):
rows = table_tag("tr")
cols = rows[0](["td", "th"])
table = [[None] * len(cols) for _ in range(len(rows))]
for row_i, row in enumerate(rows):
for col_i, col in enumerate(row(["td", "th"])):
insert(table, row_i, col_i, col)
return table
def insert(table, row, col, element):
if row >= len(table) or col >= len(table[row]):
return
if table[row][col] is None:
value = element.get_text()
table[row][col] = value
if element.has_attr("colspan"):
span = int(element["colspan"])
for i in range(1, span):
table[row][col+i] = value
if element.has_attr("rowspan"):
span = int(element["rowspan"])
for i in range(1, span):
table[row+i][col] = value
else:
insert(table, row, col + 1, element)
soup = BeautifulSoup('''
<table>
<tr><th>1</th><th>2</th><th>5</th></tr>
<tr><td rowspan="2">3</td><td colspan="2">4</td></tr>
<tr><td>6</td><td>7</td></tr>
</table>''', 'html.parser')
print(table_to_2d(soup.table))
我的问题是如何将表解析为2D数组,以 准确 表示其在浏览器中的呈现方式。或者有人可以解释浏览器如何呈现表也很好。
-
您不能只数
td
或th
单元格,不。您必须对表进行扫描以获取每一行的列数,并将上一行中任何活动的行跨度添加到该计数中。在用行跨度解析表的另一种情况下,我跟踪每个列号的行跨数,以确保来自不同单元格的数据以正确的列结尾。这里可以使用类似的技术。
第一计数列;只保留最高的数字。保留行数为2或更大的列表,并为您处理的每一行列的每行减去1。这样,您就知道每一行有多少“额外”列。以最高的列数来构建输出矩阵。
接下来,再次遍历行和单元格,这次跟踪从列号到活动计数的字典中的行跨度。同样,将值大于等于2的任何内容都保留到下一行。然后移动列号以说明活动的任何行跨度;如果在第
td
0列上有活动的行跨度,则行的第一个实际上是第二个,等等。您的代码将复制的列和行的值重复复制到输出中;我通过在给定单元格(每个默认为1)的
colspan
和rowspan
数字上创建循环以多次复制值来实现相同目的。我忽略了重叠的单元格;的HTML表格规范指出重叠的小区是一个错误,它是由用户代理来解决冲突。在下面的代码中,colspan胜过rowpan单元。from itertools import product def table_to_2d(table_tag): rowspans = [] # track pending rowspans rows = table_tag.find_all('tr') # first scan, see how many columns we need colcount = 0 for r, row in enumerate(rows): cells = row.find_all(['td', 'th'], recursive=False) # count columns (including spanned). # add active rowspans from preceding rows # we *ignore* the colspan value on the last cell, to prevent # creating 'phantom' columns with no actual cells, only extended # colspans. This is achieved by hardcoding the last cell width as 1. # a colspan of 0 means “fill until the end” but can really only apply # to the last cell; ignore it elsewhere. colcount = max( colcount, sum(int(c.get('colspan', 1)) or 1 for c in cells[:-1]) + len(cells[-1:]) + len(rowspans)) # update rowspan bookkeeping; 0 is a span to the bottom. rowspans += [int(c.get('rowspan', 1)) or len(rows) - r for c in cells] rowspans = [s - 1 for s in rowspans if s > 1] # it doesn't matter if there are still rowspan numbers 'active'; no extra # rows to show in the table means the larger than 1 rowspan numbers in the # last table row are ignored. # build an empty matrix for all possible cells table = [[None] * colcount for row in rows] # fill matrix from row data rowspans = {} # track pending rowspans, column number mapping to count for row, row_elem in enumerate(rows): span_offset = 0 # how many columns are skipped due to row and colspans for col, cell in enumerate(row_elem.find_all(['td', 'th'], recursive=False)): # adjust for preceding row and colspans col += span_offset while rowspans.get(col, 0): span_offset += 1 col += 1 # fill table data rowspan = rowspans[col] = int(cell.get('rowspan', 1)) or len(rows) - row colspan = int(cell.get('colspan', 1)) or colcount - col # next column is offset by the colspan span_offset += colspan - 1 value = cell.get_text() for drow, dcol in product(range(rowspan), range(colspan)): try: table[row + drow][col + dcol] = value rowspans[col + dcol] = rowspan except IndexError: # rowspan or colspan outside the confines of the table pass # update rowspan bookkeeping rowspans = {c: s - 1 for c, s in rowspans.items() if s > 1} return table
这样可以正确解析您的样本表:
>>> from pprint import pprint >>> pprint(table_to_2d(soup.table), width=30) [['1', '2', '5'], ['3', '4', '4'], ['3', '6', '7']]
并处理您的其他示例;第一张桌子:
>>> table1 = BeautifulSoup(''' ... <table border="1"> ... <tr> ... <th>A</th> ... <th>B</th> ... </tr> ... <tr> ... <td rowspan="2">C</td> ... <td rowspan="1">D</td> ... </tr> ... <tr> ... <td>E</td> ... <td>F</td> ... </tr> ... <tr> ... <td>G</td> ... <td>H</td> ... </tr> ... </table>''', 'html.parser') >>> pprint(table_to_2d(table1.table), width=30) [['A', 'B', None], ['C', 'D', None], ['C', 'E', 'F'], ['G', 'H', None]]
第二个:
>>> table2 = BeautifulSoup(''' ... <table border="1"> ... <tr> ... <th>A</th> ... <th>B</th> ... </tr> ... <tr> ... <td rowspan="2">C</td> ... <td rowspan="2">D</td> ... </tr> ... <tr> ... <td>E</td> ... <td>F</td> ... </tr> ... <tr> ... <td>G</td> ... <td>H</td> ... </tr> ... </table> ... ''', 'html.parser') >>> pprint(table_to_2d(table2.table), width=30) [['A', 'B', None, None], ['C', 'D', None, None], ['C', 'D', 'E', 'F'], ['G', 'H', None, None]]
最后但并非最不重要的一点是,代码正确地处理了超出实际表的
"0"
跨度和跨度(延伸至末尾),如以下示例所示:<table border="1"> <tr> <td rowspan="3">A</td> <td rowspan="0">B</td> <td>C</td> <td colspan="2">D</td> </tr> <tr> <td colspan="0">E</td> </tr> </table>
即使有rowpan和colspan值会让您相信可能会有3和5,也有两行包含4个单元格:
+---+---+---+---+ | | | C | D | | A | B +---+---+ | | | E | +---+---+-------+
这种超限的处理方式与浏览器相同。它们将被忽略,并且0跨度扩展到其余的行或列:
>>> span_demo = BeautifulSoup(''' ... <table border="1"> ... <tr> ... <td rowspan="3">A</td> ... <td rowspan="0">B</td> ... <td>C</td> ... <td colspan="2">D</td> ... </tr> ... <tr> ... <td colspan="0">E</td> ... </tr> ... </table>''', 'html.parser') >>> pprint(table_to_2d(span_demo.table), width=30) [['A', 'B', 'C', 'D'], ['A', 'B', 'E', 'E']]