GridSearch在OneVsRestClassifier中查找一个估算器
我想在SVC模型中执行GridSearchCV,但是使用了“一对多”策略。对于后一部分,我可以这样做:
model_to_set = OneVsRestClassifier(SVC(kernel="poly"))
我的问题是参数。假设我想尝试以下值:
parameters = {"C":[1,2,4,8], "kernel":["poly","rbf"],"degree":[1,2,3,4]}
为了执行GridSearchCV,我应该做类似的事情:
cv_generator = StratifiedKFold(y, k=10)
model_tunning = GridSearchCV(model_to_set, param_grid=parameters, score_func=f1_score, n_jobs=1, cv=cv_generator)
但是,然后执行它,我得到:
Traceback (most recent call last):
File "/.../main.py", line 66, in <module>
argclass_sys.set_model_parameters(model_name="SVC", verbose=3, file_path=PATH_ROOT_MODELS)
File "/.../base.py", line 187, in set_model_parameters
model_tunning.fit(self.feature_encoder.transform(self.train_feats), self.label_encoder.transform(self.train_labels))
File "/usr/local/lib/python2.7/dist-packages/sklearn/grid_search.py", line 354, in fit
return self._fit(X, y)
File "/usr/local/lib/python2.7/dist-packages/sklearn/grid_search.py", line 392, in _fit
for clf_params in grid for train, test in cv)
File "/usr/local/lib/python2.7/dist-packages/sklearn/externals/joblib/parallel.py", line 473, in __call__
self.dispatch(function, args, kwargs)
File "/usr/local/lib/python2.7/dist-packages/sklearn/externals/joblib/parallel.py", line 296, in dispatch
job = ImmediateApply(func, args, kwargs)
File "/usr/local/lib/python2.7/dist-packages/sklearn/externals/joblib/parallel.py", line 124, in __init__
self.results = func(*args, **kwargs)
File "/usr/local/lib/python2.7/dist-packages/sklearn/grid_search.py", line 85, in fit_grid_point
clf.set_params(**clf_params)
File "/usr/local/lib/python2.7/dist-packages/sklearn/base.py", line 241, in set_params
% (key, self.__class__.__name__))
ValueError: Invalid parameter kernel for estimator OneVsRestClassifier
基本上,由于SVC在OneVsRestClassifier中,并且这是我发送给GridSearchCV的估计量,因此无法访问SVC的参数。
为了完成我想要的,我看到了两种解决方案:
- 创建SVC时,以某种方式告诉它不要使用一对一策略,而要使用一对一策略。
- 以某种方式指示GridSearchCV,该参数对应于OneVsRestClassifier中的估计器。
我尚未找到一种方法来做上述提到的任何替代方法。你知道有办法做任何一个吗?或者,也许您可以建议另一种获得相同结果的方法?
谢谢!
-
当您将嵌套估计量与网格搜索一起使用时,可以将参数的范围
__
作为分隔符。在这种情况下,SVC模型存储为estimator
在OneVsRestClassifier
模型内部命名的属性:from sklearn.datasets import load_iris from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import SVC from sklearn.grid_search import GridSearchCV from sklearn.metrics import f1_score iris = load_iris() model_to_set = OneVsRestClassifier(SVC(kernel="poly")) parameters = { "estimator__C": [1,2,4,8], "estimator__kernel": ["poly","rbf"], "estimator__degree":[1, 2, 3, 4], } model_tunning = GridSearchCV(model_to_set, param_grid=parameters, score_func=f1_score) model_tunning.fit(iris.data, iris.target) print model_tunning.best_score_ print model_tunning.best_params_
产生:
0.973290762737 {'estimator__kernel': 'poly', 'estimator__C': 1, 'estimator__degree': 2}