如何很好地使用Cython更快地求解微分方程?
我想减少Scipy的odeint解微分方程所花费的时间。
为了练习,我使用了科学计算中Python涵盖的示例
作为模板。因为odeint接受一个函数f
作为参数,所以我将此函数编写为静态类型的Cython版本,并希望odeint的运行时间会大大减少。
该函数f
包含在名为的文件中ode.pyx
,如下所示:
import numpy as np
cimport numpy as np
from libc.math cimport sin, cos
def f(y, t, params):
cdef double theta = y[0], omega = y[1]
cdef double Q = params[0], d = params[1], Omega = params[2]
cdef double derivs[2]
derivs[0] = omega
derivs[1] = -omega/Q + np.sin(theta) + d*np.cos(Omega*t)
return derivs
def fCMath(y, double t, params):
cdef double theta = y[0], omega = y[1]
cdef double Q = params[0], d = params[1], Omega = params[2]
cdef double derivs[2]
derivs[0] = omega
derivs[1] = -omega/Q + sin(theta) + d*cos(Omega*t)
return derivs
然后,我创建一个文件setup.py
来编写函数:
from distutils.core import setup
from Cython.Build import cythonize
setup(ext_modules=cythonize('ode.pyx'))
求解微分方程的脚本(也包含的Python版本f
)称为solveODE.py
,其外观为:
import ode
import numpy as np
from scipy.integrate import odeint
import time
def f(y, t, params):
theta, omega = y
Q, d, Omega = params
derivs = [omega,
-omega/Q + np.sin(theta) + d*np.cos(Omega*t)]
return derivs
params = np.array([2.0, 1.5, 0.65])
y0 = np.array([0.0, 0.0])
t = np.arange(0., 200., 0.05)
start_time = time.time()
odeint(f, y0, t, args=(params,))
print("The Python Code took: %.6s seconds" % (time.time() - start_time))
start_time = time.time()
odeint(ode.f, y0, t, args=(params,))
print("The Cython Code took: %.6s seconds ---" % (time.time() - start_time))
start_time = time.time()
odeint(ode.fCMath, y0, t, args=(params,))
print("The Cython Code incorpoarting two of DavidW_s suggestions took: %.6s seconds ---" % (time.time() - start_time))
然后,我运行:
python setup.py build_ext --inplace
python solveODE.py
在终端。
python版本的时间约为0.055秒,而Cython版本的时间约为0.04秒。
是否有人建议改进我解决微分方程的尝试,最好不要使用Cython修改odeint例程本身?
编辑
我将DavidW的建议合并到了两个文件中ode.pyx
,solveODE.py
用这些建议运行代码仅花费了大约0.015秒。