nolearn用于多标签分类

发布于 2021-01-29 16:38:52

我尝试使用从nolearn包导入的DBN函数,这是我的代码:

from nolearn.dbn import DBN
import numpy as np
from sklearn import cross_validation

fileName = 'data.csv'
fileName_1 = 'label.csv'

data = np.genfromtxt(fileName, dtype=float, delimiter = ',')
label = np.genfromtxt(fileName_1, dtype=int, delimiter = ',')

clf = DBN(
    [data, 300, 10],
    learn_rates=0.3,
    learn_rate_decays=0.9,
    epochs=10,
    verbose=1,
    )

clf.fit(data,label)
score = cross_validation.cross_val_score(clf, data, label,scoring='f1', cv=10)
print score

由于我的数据的形状为(1231,229),标签的形状为(1231,13),因此标签集看起来像([0 0 1 0 1 0 0 0 0 0 0 1 1 0]
…,[。 ..]),当我运行代码时,出现以下错误消息:输入形状错误(1231,13)。我想知道这里可能会发生两个问题:

  1. DBN不支持多标签分类
  2. 我的标签不适合在DBN适合功能中使用。
关注者
0
被浏览
46
1 个回答
  • 面试哥
    面试哥 2021-01-29
    为面试而生,有面试问题,就找面试哥。

    正如Francisco Vargas所提,nolearn.dbn已弃用,您应该改nolearn.lasagne而使用(如果可以的话)。

    如果要在千层面中进行多标签分类,则应将regression参数设置为True,以定义验证分数和自定义损失。

    这是一个例子:

    import numpy as np
    import theano.tensor as T
    from lasagne import layers
    from lasagne.updates import nesterov_momentum
    from nolearn.lasagne import NeuralNet
    from nolearn.lasagne import BatchIterator
    from lasagne import nonlinearities
    
    # custom loss: multi label cross entropy
    def multilabel_objective(predictions, targets):
        epsilon = np.float32(1.0e-6)
        one = np.float32(1.0)
        pred = T.clip(predictions, epsilon, one - epsilon)
        return -T.sum(targets * T.log(pred) + (one - targets) * T.log(one - pred), axis=1)
    
    
    net = NeuralNet(
        # customize "layers" to represent the architecture you want
        # here I took a dummy architecture
        layers=[(layers.InputLayer, {"name": 'input', 'shape': (None, 1, 229, 1)}),
    
                (layers.DenseLayer, {"name": 'hidden1', 'num_units': 20}),
                (layers.DenseLayer, {"name": 'output', 'nonlinearity': nonlinearities.sigmoid, 'num_units': 13})], #because you have 13 outputs
    
        # optimization method:
        update=nesterov_momentum,
        update_learning_rate=5*10**(-3),
        update_momentum=0.9,
    
        max_epochs=500,  # we want to train this many epochs
        verbose=1,
    
        #Here are the important parameters for multi labels
        regression=True,
    
        objective_loss_function=multilabel_objective,
        custom_score=("validation score", lambda x, y: np.mean(np.abs(x - y)))
    
        )
    
    net.fit(X_train, labels_train)
    


知识点
面圈网VIP题库

面圈网VIP题库全新上线,海量真题题库资源。 90大类考试,超10万份考试真题开放下载啦

去下载看看