matplotlib茎图的优化
我正在尝试使用’matplotlib.pyplot.stem’函数生成一个茎图。该代码可以运行,但是需要5分钟以上的时间来处理。
我在Matlab中有一个类似的代码,几乎可以立即用相同的输入数据生成相同的图。
有没有一种方法可以优化此代码以获得更快的速度或更好的功能?
干图’H’和’plotdata’的参数为16384 x 1数组。
def stemplot():
import numpy as np
from scipy.fftpack import fft
import matplotlib.pyplot as plt
################################################
# Code to set up the plot data
N=2048
dr = 100
k = np.arange(0,N)
cos = np.cos
pi = np.pi
w = 1-1.932617*cos(2*pi*k/(N-1))+1.286133*cos(4*pi*k/(N-1))-0.387695*cos(6*pi*k/(N-1))+0.0322227*cos(8*pi*k/(N-1))
y = np.concatenate([w, np.zeros((7*N))])
H = abs(fft(y, axis = 0))
H = np.fft.fftshift(H)
H = H/max(H)
H = 20*np.log10(H)
H = dr+H
H[H < 0] = 0 # Set all negative values in dr+H to 0
plotdata = ((np.arange(1,(8*N)+1,1))-1-4*N)/8
#################################################
# Plotting Code
plt.figure
plt.stem(plotdata,H,markerfmt = " ")
plt.axis([(-4*N)/8, (4*N)/8, 0, dr])
plt.grid()
plt.ylabel('decibels')
plt.xlabel('DFT bins')
plt.title('Frequency response (Flat top)')
plt.show()
return
这也是Matlab代码供参考:
N=2048;
dr = 100;
k=0:N-1
w = 1 - 1.932617*cos(2*pi*k/(N-1)) + 1.286133*cos(4*pi*k/(N-1)) -0.387695*cos(6*pi*k/(N-1)) +0.0322227*cos(8*pi*k/(N-1));
H = abs(fft([w zeros(1,7*N)]));
H = fftshift(H);
H = H/max(H);
H = 20*log10(H);
H = max(0,dr+H); % Sets negative numbers in dr+H to 0
figure
stem(([1:(8*N)]-1-4*N)/8,H,'-');
set(findobj('Type','line'),'Marker','none','Color',[.871 .49 0])
xlim([-4*N 4*N]/8)
ylim([0 dr])
set(gca,'YTickLabel','-100|-90|-80|-70|-60|-50|-40|-30|-20|-10|0')
grid on
ylabel('decibels')
xlabel('DFT bins')
title('Frequency response (Flat top)')
-
这里似乎不需要
stem
绘图,因为无论如何标记都是看不见的,并且由于点太多而没有意义。而是使用LineCollection可能有意义。无论如何,这就是matplotlib在将来的版本中将如何执行-请参阅此PR。下面的代码对我来说在0.25秒内运行。(
plot
由于行数很多,这仍然比使用稍长。)import numpy as np from scipy.fftpack import fft import matplotlib.pyplot as plt import time import matplotlib.collections as mcoll N=2048 k = np.arange(0,N) dr = 100 cos = np.cos pi = np.pi w = 1-1.932617*cos(2*pi*k/(N-1))+1.286133*cos(4*pi*k/(N-1))-0.387695*cos(6*pi*k/(N-1))+0.0322227*cos(8*pi*k/(N-1)) y = np.concatenate([w, np.zeros((7*N))]) H = abs(fft(y, axis = 0)) H = np.fft.fftshift(H) H = H/max(H) H = 20*np.log10(H) H = dr+H H[H < 0] = 0 # Set all negative values in dr+H to 0 plotdata = ((np.arange(1,(8*N)+1,1))-1-4*N)/8 lines = [] for thisx, thisy in zip(plotdata,H): lines.append(((thisx, 0), (thisx, thisy))) stemlines = mcoll.LineCollection(lines, linestyles="-", colors="C0", label='_nolegend_') plt.gca().add_collection(stemlines) plt.axis([(-4*N)/8, (4*N)/8, 0, dr]) plt.grid() plt.ylabel('decibels') plt.xlabel('DFT bins') plt.title('Frequency response (Flat top)') plt.show()