3D中的射线与正方形/矩形相交
喂
正在制作游戏,并且仅在3D空间中寻找与正方形或矩形上的射线相交。搜索了网络,发现了许多解决方案,但是我无法理解的是在2D中有线和线段的交集脚本,但是我想不起来必须将其制作为3D。它从哪一侧与正方形或矩形相交并不重要,但它必须能够检索相交矢量的点,以便以后可以测试其在同一射线相交的其他相交之前或之后发生的距离。
python或其他类似脚本语言的任何示例将不胜感激
编辑 :不知道必须修改2D以显示一个实例,但做了一个新的并发布了两者。
//this is the exaple it test a ray onto a plane then look to se if that point is in the rectangle and saves it to test for distanse later
list Faces; //triangle faces
list Points; //
vector FindPoint(){
//calcute the point of intersection onto the plane and returns it
//if it can intersect
//else return ZERO_VECTOR
}
integer point-in-quadrilateral(){
//return 1 if the point is in the rectangular on the plane
//else return 0
}
default{
state_entry(){
integer n = (Faces != []); //return number of elements
integer x = 0;
while(x < n){
vector intersection = FindPoint( FromList(Faces, x) ); //take out a element and runs it trough the function
if(intersection != ZERO_VECTOR){
integer test = point-in-quadrilateral( FromList(Faces, x) ); //find out if the point is in rectangular
if(test == 1){ //if so
Points += intersection; //save the point
}
}
++x;
}
float first; //the distanse to the box intersection
integer l = (Points != []);
integer d;
while(d < l){
if(Dist( FromList(Points, d) ) < first) //if the new distanse is less then first
return 0; //then end script
++d;
}
}
}
//this is the 2D version
vector lineIntersection(vector one, vector two, vector three, vector four){
float bx = two.x - one.x;
float by = two.y - one.y;
float dx = four.x - three.x;
float dy = four.y - three.y;
float b_dot_d_perp = bx*dy - by*dx;
if(b_dot_d_perp == 0.0) {
return ZERO_VECTOR;
}
float cx = three.x-one.x;
float cy = three.y-one.y;
float t = (cx*dy - cy*dx) / b_dot_d_perp;
if(LineSeg){ //if true tests for line segment
if((t < 0.0) || (t > 1.0)){
return ZERO_VECTOR;
}
float u = (cx * by - cy * bx) / b_dot_d_perp;
if((u < 0.0) || (u > 1.0)) {
return ZERO_VECTOR;
}
}
return <one.x+t*bx, one.y+t*by, 0.0>;
}
-
在R3中为一条线创建一个矢量方程,然后求解该线在要对其进行测试的矩形平面中的交点。之后,测试该解决方案的点是否在界限之内就足够简单了。
解的参数t可以通过以下方式找到:
t = (a * (x0 - rx) + b * (y0 - ry) + c * (x0 - rz)) / (a * vx + b * vy + c * vz)
哪里:
a(x - x0) + b(y - y0) + c(z - z0) = 0
是矩形所在平面的等式
和:
<x, y, z> = <rx + vx * t, ry + vy * t, rz + vz * t>
是相关直线的向量方程。
注意:
<rx, ry, rz>
是向量方程式的起始点,并且
<vx, vy, vz>
是上式的方向向量
之后,将参数t插入向量方程式中即可为您测试距离。