opencv python中的椭圆检测

发布于 2021-01-29 16:17:01

我的图片在这里:

我的照片在这里。

我正在寻找更好的解决方案或算法来检测这张照片中的椭圆部分(盘),并在Opencv中的另一张照片中对其进行遮罩。你能给我一些建议或解决方案吗?我的代码是:

 circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1.2, 1, param1=128, minRadius=200, maxRadius=600)
    # draw detected circles on image
    circles = circles.tolist()
    for cir in circles:
        for x, y, r in cir:
            x, y, r = int(x), int(y), int(r)
            cv2.circle(img, (x, y), r, (0, 255, 0), 4)

    # show the output image
    cv2.imshow("output", cv2.resize(img, (500, 500)))
关注者
0
被浏览
51
1 个回答
  • 面试哥
    面试哥 2021-01-29
    为面试而生,有面试问题,就找面试哥。

    skimage的另一种选择是由Xie, Yonghong, and Qiang Ji

    “一种新的有效的椭圆检测方法。” 模式识别,2002年。会议记录。第16届国际会议。卷 2. IEEE,2002年。

    他们的椭圆检测代码相对较慢,此示例大约需要70秒;相比网站声称“ 28秒”。

    如果您有conda或pip:“名称”,请安装scikit-image并试一试…

    他们的代码可以在这里找到,也可以下面复制/粘贴:

    import matplotlib.pyplot as plt
    
    from skimage import data, color, img_as_ubyte
    from skimage.feature import canny
    from skimage.transform import hough_ellipse
    from skimage.draw import ellipse_perimeter
    
    # Load picture, convert to grayscale and detect edges
    image_rgb = data.coffee()[0:220, 160:420]
    image_gray = color.rgb2gray(image_rgb)
    edges = canny(image_gray, sigma=2.0,
                  low_threshold=0.55, high_threshold=0.8)
    
    # Perform a Hough Transform
    # The accuracy corresponds to the bin size of a major axis.
    # The value is chosen in order to get a single high accumulator.
    # The threshold eliminates low accumulators
    result = hough_ellipse(edges, accuracy=20, threshold=250,
                           min_size=100, max_size=120)
    result.sort(order='accumulator')
    
    # Estimated parameters for the ellipse
    best = list(result[-1])
    yc, xc, a, b = [int(round(x)) for x in best[1:5]]
    orientation = best[5]
    
    # Draw the ellipse on the original image
    cy, cx = ellipse_perimeter(yc, xc, a, b, orientation)
    image_rgb[cy, cx] = (0, 0, 255)
    # Draw the edge (white) and the resulting ellipse (red)
    edges = color.gray2rgb(img_as_ubyte(edges))
    edges[cy, cx] = (250, 0, 0)
    
    fig2, (ax1, ax2) = plt.subplots(ncols=2, nrows=1, figsize=(8, 4), sharex=True,
                                    sharey=True,
                                    subplot_kw={'adjustable':'box-forced'})
    
    ax1.set_title('Original picture')
    ax1.imshow(image_rgb)
    
    ax2.set_title('Edge (white) and result (red)')
    ax2.imshow(edges)
    
    plt.show()
    


知识点
面圈网VIP题库

面圈网VIP题库全新上线,海量真题题库资源。 90大类考试,超10万份考试真题开放下载啦

去下载看看