从边缘列表构建所有汉密尔顿路径
我在从相关元组列表中找到构建树路径的方法时遇到了麻烦?我只想要一个访问每个节点一次的每个路径的列表,也就是哈密顿路径。
我一直很近,但是缺少一些路径。
例如,假设我们具有以下连接列表:
connections = [(1, 4), (1, 5), (2, 5), (3, 4), (4, 1), (4, 3), (4, 5), (5, 1), (5, 2), (5, 4)]
所需的输出:
[[1,4,3], [1,4,5,2], [1,5,2], [1,5,4,3],
[2,5,1,4,3], [2,5,4,1], [2,5,4,3],
[3,4,1,5,2], [3,4,5,1], [3,4,5,2],
[4, 3], [4,1,5,2], [4,5,1], [4,5,2],
[5, 2], [5,1,4,3], [5,4,1], [5,4,3]
]
因此,每个可能的路径都被存储,每个节点仅被访问一次:
这是我所拥有的,但是缺少很多路径:
def find_paths(current_vertex):
if current_vertex not in current_path:
current_path.append(current_vertex)
possible_next_verticies = [v2 for v1,v2 in connections if v1 == current_vertex]
# if the current vertex is in the current_path
if current_vertex in current_path:
# if all the possible_next_vertices are in the current_path, return
adjacencies = [v for v in possible_next_verticies if v not in current_path]
if not adjacencies:
print "current_path: %s" % current_path
if current_path not in TESTED_PATHS:
TESTED_PATHS.append(current_path)
current_path.remove(current_vertex)
return
for next_vertice in possible_next_verticies:
if next_vertice not in current_path:
current_path.append(next_vertice)
find_paths(next_vertice)
continue
else:
continue
return current_path
-
好的,由于要尝试使用的数据结构,我遇到了很多麻烦,因为原始连接图中有重复项。
更好的是使用这样的数据结构:
connections = {1: [4, 5], 2: [5], 3: [4], 4: [1, 3, 5], 5: [1, 2, 4]}
然后可以从https://www.python.org/doc/essays/graphs/使用以下两种算法
def find_path(graph, start, end, path=[]): path = path + [start] if start == end: return path if not graph.has_key(start): return None for node in graph[start]: if node not in path: newpath = find_path(graph, node, end, path) if newpath: return newpath return None
和完整的路径
def find_all_paths(graph, start, end, path=[]): path = path + [start] if start == end: return [path] if not graph.has_key(start): return [] paths = [] for node in graph[start]: if node not in path: newpaths = find_all_paths(graph, node, end, path) for newpath in newpaths: paths.append(newpath) return paths