熊猫读取嵌套的json
我很好奇如何使用熊猫读取以下结构的嵌套json:
{
"number": "",
"date": "01.10.2016",
"name": "R 3932",
"locations": [
{
"depTimeDiffMin": "0",
"name": "Spital am Pyhrn Bahnhof",
"arrTime": "",
"depTime": "06:32",
"platform": "2",
"stationIdx": "0",
"arrTimeDiffMin": "",
"track": "R 3932"
},
{
"depTimeDiffMin": "0",
"name": "Windischgarsten Bahnhof",
"arrTime": "06:37",
"depTime": "06:40",
"platform": "2",
"stationIdx": "1",
"arrTimeDiffMin": "1",
"track": ""
},
{
"depTimeDiffMin": "",
"name": "Linz/Donau Hbf",
"arrTime": "08:24",
"depTime": "",
"platform": "1A-B",
"stationIdx": "22",
"arrTimeDiffMin": "1",
"track": ""
}
]
}
这使数组保持为json。我宁愿将其扩展为列。
pd.read_json("/myJson.json", orient='records')
编辑
感谢您的第一个答案。我应该提一下我的问题:数组中嵌套属性的拼合不是强制性的。仅将[A,B,C]连接df.locations [‘name’]就可以了。
我的文件包含多个JSON对象(每行1个),我想保留number,date,name和location列。但是,我需要加入这些地点。
allLocations = ""
isFirst = True
for location in result.locations:
if isFirst:
isFirst = False
allLocations = location['name']
else:
allLocations += "; " + location['name']
allLocations
我在这里的方法似乎不是高效/熊猫风格。
-
您可以使用
json_normalize
:import json with open('myJson.json') as data_file: data = json.load(data_file) df = pd.json_normalize(data, 'locations', ['date', 'number', 'name'], record_prefix='locations_') print (df) locations_arrTime locations_arrTimeDiffMin locations_depTime \ 0 06:32 1 06:37 1 06:40 2 08:24 1 locations_depTimeDiffMin locations_name locations_platform \ 0 0 Spital am Pyhrn Bahnhof 2 1 0 Windischgarsten Bahnhof 2 2 Linz/Donau Hbf 1A-B locations_stationIdx locations_track number name date 0 0 R 3932 R 3932 01.10.2016 1 1 R 3932 01.10.2016 2 22 R 3932 01.10.2016
编辑:
你可以用
read_json
与解析name
的DataFrame
构造函数,并最后groupby
与应用join
:df = pd.read_json("myJson.json") df.locations = pd.DataFrame(df.locations.values.tolist())['name'] df = df.groupby(['date','name','number'])['locations'].apply(','.join).reset_index() print (df) date name number locations 0 2016-01-10 R 3932 Spital am Pyhrn Bahnhof,Windischgarsten Bahnho...