Python中OLS的Newey-West标准错误?
我想要一个系数和与之相关的Newey-West标准误差。
我正在寻找Python库(理想情况下,但是任何可行的解决方案都可以)可以完成以下R代码的工作:
library(sandwich)
library(lmtest)
a <- matrix(c(1,3,5,7,4,5,6,4,7,8,9))
b <- matrix(c(3,5,6,2,4,6,7,8,7,8,9))
temp.lm = lm(a ~ b)
temp.summ <- summary(temp.lm)
temp.summ$coefficients <- unclass(coeftest(temp.lm, vcov. = NeweyWest))
print (temp.summ$coefficients)
结果:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.0576208 2.5230532 0.8155281 0.4358205
b 0.5594796 0.4071834 1.3740235 0.2026817
我得到系数并与之相关的标准误差。
我看到statsmodels.stats.sandwich_covariance.cov_hac模块,但是我看不到如何使其与OLS一起使用。
-
编辑(10/31/2015)以反映
statsmodels
2015年秋季的首选编码样式。在
statsmodels
0.6.1版中,您可以执行以下操作:import pandas as pd import numpy as np import statsmodels.formula.api as smf df = pd.DataFrame({'a':[1,3,5,7,4,5,6,4,7,8,9], 'b':[3,5,6,2,4,6,7,8,7,8,9]}) reg = smf.ols('a ~ 1 + b',data=df).fit(cov_type='HAC',cov_kwds={'maxlags':1}) print reg.summary() OLS Regression Results ============================================================================== Dep. Variable: a R-squared: 0.281 Model: OLS Adj. R-squared: 0.201 Method: Least Squares F-statistic: 1.949 Date: Sat, 31 Oct 2015 Prob (F-statistic): 0.196 Time: 03:15:46 Log-Likelihood: -22.603 No. Observations: 11 AIC: 49.21 Df Residuals: 9 BIC: 50.00 Df Model: 1 Covariance Type: HAC ============================================================================== coef std err z P>|z| [95.0% Conf. Int.] ------------------------------------------------------------------------------ Intercept 2.0576 2.661 0.773 0.439 -3.157 7.272 b 0.5595 0.401 1.396 0.163 -0.226 1.345 ============================================================================== Omnibus: 0.361 Durbin-Watson: 1.468 Prob(Omnibus): 0.835 Jarque-Bera (JB): 0.331 Skew: 0.321 Prob(JB): 0.847 Kurtosis: 2.442 Cond. No. 19.1 ============================================================================== Warnings: [1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 1 lags and without small sample correction
或者您可以
get_robustcov_results
在拟合模型后使用该方法:reg = smf.ols('a ~ 1 + b',data=df).fit() new = reg.get_robustcov_results(cov_type='HAC',maxlags=1) print new.summary() OLS Regression Results ============================================================================== Dep. Variable: a R-squared: 0.281 Model: OLS Adj. R-squared: 0.201 Method: Least Squares F-statistic: 1.949 Date: Sat, 31 Oct 2015 Prob (F-statistic): 0.196 Time: 03:15:46 Log-Likelihood: -22.603 No. Observations: 11 AIC: 49.21 Df Residuals: 9 BIC: 50.00 Df Model: 1 Covariance Type: HAC ============================================================================== coef std err z P>|z| [95.0% Conf. Int.] ------------------------------------------------------------------------------ Intercept 2.0576 2.661 0.773 0.439 -3.157 7.272 b 0.5595 0.401 1.396 0.163 -0.226 1.345 ============================================================================== Omnibus: 0.361 Durbin-Watson: 1.468 Prob(Omnibus): 0.835 Jarque-Bera (JB): 0.331 Skew: 0.321 Prob(JB): 0.847 Kurtosis: 2.442 Cond. No. 19.1 ============================================================================== Warnings: [1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 1 lags and without small sample correction
的默认
statsmodels
值与中等效方法的默认值略有不同R
。通过将调用更改为以下内容,R
可以使该方法等效于statsmodels
默认方法(如上所述)vcov,
:temp.summ$coefficients <- unclass(coeftest(temp.lm, vcov. = NeweyWest(temp.lm,lag=1,prewhite=FALSE))) print (temp.summ$coefficients) Estimate Std. Error t value Pr(>|t|) (Intercept) 2.0576208 2.6605060 0.7733945 0.4591196 b 0.5594796 0.4007965 1.3959193 0.1962142
您仍然可以在熊猫(0.17)中执行Newey-West,尽管我认为该计划将在熊猫中弃用OLS:
print pd.stats.ols.OLS(df.a,df.b,nw_lags=1) -------------------------Summary of Regression Analysis------------------------- Formula: Y ~ <x> + <intercept> Number of Observations: 11 Number of Degrees of Freedom: 2 R-squared: 0.2807 Adj R-squared: 0.2007 Rmse: 2.0880 F-stat (1, 9): 1.5943, p-value: 0.2384 Degrees of Freedom: model 1, resid 9 -----------------------Summary of Estimated Coefficients------------------------ Variable Coef Std Err t-stat p-value CI 2.5% CI 97.5% -------------------------------------------------------------------------------- x 0.5595 0.4431 1.26 0.2384 -0.3090 1.4280 intercept 2.0576 2.9413 0.70 0.5019 -3.7073 7.8226 *** The calculations are Newey-West adjusted with lags 1 ---------------------------------End of Summary---------------------------------