pandas dataframe: loc vs query performance

发布于 2021-01-29 15:07:58

I have 2 dataframes in python that I would like to query for data.

  • DF1: 4M records x 3 columns. The query function seams more efficient than the loc function.

  • DF2: 2K records x 6 columns. The loc function seams much more efficient than the query function.

Both queries return a single record. The simulation was done by running the
same operation in a loop 10K times.

Running python 2.7 and pandas 0.16.0

Any recommendations to improve the query speed?

关注者
0
被浏览
68
1 个回答
  • 面试哥
    面试哥 2021-01-29
    为面试而生,有面试问题,就找面试哥。

    For improve performance is possible use numexpr:

    import numexpr
    
    np.random.seed(125)
    N = 40000000
    df = pd.DataFrame({'A':np.random.randint(10, size=N)})
    
    def ne(df):
        x = df.A.values
        return df[numexpr.evaluate('(x > 5)')]
    print (ne(df))
    
    In [138]: %timeit (ne(df))
    1 loop, best of 3: 494 ms per loop
    
    In [139]: %timeit df[df.A > 5]
    1 loop, best of 3: 536 ms per loop
    
    In [140]: %timeit df.query('A > 5')
    1 loop, best of 3: 781 ms per loop
    
    In [141]: %timeit df[df.eval('A > 5')]
    1 loop, best of 3: 770 ms per loop
    

    import numexpr
    np.random.seed(125)
    
    def ne(x):
        x = x.A.values
        return x[numexpr.evaluate('(x > 5)')]
    
    def be(x):
        return x[x.A > 5]
    
    def q(x):
        return x.query('A > 5')
    
    def ev(x):
        return x[x.eval('A > 5')]
    
    
    def make_df(n):
        df = pd.DataFrame(np.random.randint(10, size=n), columns=['A'])
        return df
    
    
    perfplot.show(
        setup=make_df,
        kernels=[ne, be, q, ev],
        n_range=[2**k for k in range(2, 25)],
        logx=True,
        logy=True,
        equality_check=False,  
        xlabel='len(df)')
    

    graph



知识点
面圈网VIP题库

面圈网VIP题库全新上线,海量真题题库资源。 90大类考试,超10万份考试真题开放下载啦

去下载看看