使用来自Keras模型的张量流图进行预测

发布于 2021-01-29 15:07:13

我有一个使用Keras和Tensorflow作为后端训练的模型,但是现在我需要将我的模型转换为特定应用程序的张量流图。我尝试执行此操作并进行了预测以确保其正常工作,但是与从model.predict()收集的结果进行比较时,我得到了非常不同的值。例如:

from keras.models import load_model
import tensorflow as tf

model = load_model('model_file.h5')

x_placeholder = tf.placeholder(tf.float32, shape=(None,7214,1))
y = model(x_placeholder)

x = np.ones((1,7214,1))


with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    print("Predictions from:\ntf graph:      "+str(sess.run(y, feed_dict={x_placeholder:x})))
    print("keras predict: "+str(model.predict(x)))

返回:

Predictions from:
tf graph:      [[-0.1015993   0.07432419  0.0592984 ]]
keras predict: [[ 0.39339241  0.57949686 -3.67846966]]

keras预测的值是正确的,但tf图的结果却不正确。

如果它有助于了解最终的预期应用程序,那么我将使用tf.gradients()函数创建一个jacobian矩阵,但是与theano的jacobian函数进行比较(当前给出正确的jacobian函数)时,当前它无法返回正确的结果。这是我的tensorflow
jacobian代码:

x = tf.placeholder(tf.float32, shape=(None,7214,1))
y = tf.reshape(model(x)[0],[-1])
y_list = tf.unstack(y)

jacobian_list = [tf.gradients(y_, x)[0] for y_ in y_list]
jacobian = tf.stack(jacobian_list)

编辑:模型代码

import numpy as np

from keras.models import Sequential
from keras.layers import Dense, InputLayer, Flatten
from keras.layers.convolutional import Conv1D
from keras.layers.convolutional import MaxPooling1D
from keras.optimizers import Adam
from keras.callbacks import EarlyStopping, ReduceLROnPlateau

# activation function used following every layer except for the output layers
activation = 'relu'

# model weight initializer
initializer = 'he_normal'

# shape of input data that is fed into the input layer
input_shape = (None,7214,1)

# number of filters used in the convolutional layers
num_filters = [4,16]

# length of the filters in the convolutional layers
filter_length = 8

# length of the maxpooling window 
pool_length = 4

# number of nodes in each of the hidden fully connected layers
num_hidden_nodes = [256,128]

# number of samples fed into model at once during training
batch_size = 64

# maximum number of interations for model training
max_epochs = 30

# initial learning rate for optimization algorithm
lr = 0.0007

# exponential decay rate for the 1st moment estimates for optimization algorithm
beta_1 = 0.9

# exponential decay rate for the 2nd moment estimates for optimization algorithm
beta_2 = 0.999

# a small constant for numerical stability for optimization algorithm
optimizer_epsilon = 1e-08

model = Sequential([

    InputLayer(batch_input_shape=input_shape),

    Conv1D(kernel_initializer=initializer, activation=activation, padding="same", filters=num_filters[0], kernel_size=filter_length),

    Conv1D(kernel_initializer=initializer, activation=activation, padding="same", filters=num_filters[1], kernel_size=filter_length),

    MaxPooling1D(pool_size=pool_length),

    Flatten(),

    Dense(units=num_hidden_nodes[0], kernel_initializer=initializer, activation=activation),

    Dense(units=num_hidden_nodes[1], kernel_initializer=initializer, activation=activation),

    Dense(units=3, activation="linear", input_dim=num_hidden_nodes[1]),
])

# compile model
loss_function = mean squared error
early_stopping_min_delta = 0.0001
early_stopping_patience = 4
reduce_lr_factor = 0.5
reuce_lr_epsilon = 0.0009
reduce_lr_patience = 2
reduce_lr_min = 0.00008

optimizer = Adam(lr=lr, beta_1=beta_1, beta_2=beta_2, epsilon=optimizer_epsilon, decay=0.0)

early_stopping = EarlyStopping(monitor='val_loss',     min_delta=early_stopping_min_delta, 
                                   patience=early_stopping_patience, verbose=2, mode='min')

reduce_lr = ReduceLROnPlateau(monitor='loss', factor=0.5, epsilon=reuce_lr_epsilon, 
                              patience=reduce_lr_patience,     min_lr=reduce_lr_min, mode='min', verbose=2)

model.compile(optimizer=optimizer, loss=loss_function)

model.fit(train_x, train_y, validation_data=(cv_x, cv_y),
      epochs=max_epochs, batch_size=batch_size, verbose=2,
      callbacks=[reduce_lr,early_stopping])

model.save('model_file.h5')
关注者
0
被浏览
98
1 个回答
  • 面试哥
    面试哥 2021-01-29
    为面试而生,有面试问题,就找面试哥。

    @frankyjuang将我链接到这里

    https://github.com/amir-abdi/keras_to_tensorflow

    并将其与来自

    https://github.com/metaflow-ai/blog/blob/master/tf-
    freeze/load.py

    https://github.com/tensorflow/tensorflow/issues/675

    我找到了既可以使用tf图进行预测又可以创建jacobian函数的解决方案:

    import tensorflow as tf
    import numpy as np
    
    # Create function to convert saved keras model to tensorflow graph
    def convert_to_pb(weight_file,input_fld='',output_fld=''):
    
        import os
        import os.path as osp
        from tensorflow.python.framework import graph_util
        from tensorflow.python.framework import graph_io
        from keras.models import load_model
        from keras import backend as K
    
    
        # weight_file is a .h5 keras model file
        output_node_names_of_input_network = ["pred0"] 
        output_node_names_of_final_network = 'output_node'
    
        # change filename to a .pb tensorflow file
        output_graph_name = weight_file[:-2]+'pb'
        weight_file_path = osp.join(input_fld, weight_file)
    
        net_model = load_model(weight_file_path)
    
        num_output = len(output_node_names_of_input_network)
        pred = [None]*num_output
        pred_node_names = [None]*num_output
    
        for i in range(num_output):
            pred_node_names[i] = output_node_names_of_final_network+str(i)
            pred[i] = tf.identity(net_model.output[i], name=pred_node_names[i])
    
        sess = K.get_session()
    
        constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph.as_graph_def(), pred_node_names)
        graph_io.write_graph(constant_graph, output_fld, output_graph_name, as_text=False)
        print('saved the constant graph (ready for inference) at: ', osp.join(output_fld, output_graph_name))
    
        return output_fld+output_graph_name
    

    呼叫:

    tf_model_path = convert_to_pb('model_file.h5','/model_dir/','/model_dir/')
    

    创建函数以将tf模型加载为图形:

    def load_graph(frozen_graph_filename):
        # We load the protobuf file from the disk and parse it to retrieve the 
        # unserialized graph_def
        with tf.gfile.GFile(frozen_graph_filename, "rb") as f:
            graph_def = tf.GraphDef()
            graph_def.ParseFromString(f.read())
    
        # Then, we can use again a convenient built-in function to import a graph_def into the 
        # current default Graph
        with tf.Graph().as_default() as graph:
            tf.import_graph_def(
                graph_def, 
                input_map=None, 
                return_elements=None, 
                name="prefix", 
                op_dict=None, 
                producer_op_list=None
            )
    
        input_name = graph.get_operations()[0].name+':0'
        output_name = graph.get_operations()[-1].name+':0'
    
        return graph, input_name, output_name
    

    创建一个函数以使用tf图进行模型预测

    def predict(model_path, input_data):
        # load tf graph
        tf_model,tf_input,tf_output = load_graph(model_path)
    
        # Create tensors for model input and output
        x = tf_model.get_tensor_by_name(tf_input)
        y = tf_model.get_tensor_by_name(tf_output)
    
        # Number of model outputs
        num_outputs = y.shape.as_list()[0]
        predictions = np.zeros((input_data.shape[0],num_outputs))
        for i in range(input_data.shape[0]):        
            with tf.Session(graph=tf_model) as sess:
                y_out = sess.run(y, feed_dict={x: input_data[i:i+1]})
                predictions[i] = y_out
    
        return predictions
    

    作出预测:

    tf_predictions = predict(tf_model_path,test_data)
    

    雅可比函数:

    def compute_jacobian(model_path,input_data):
    
        tf_model,tf_input,tf_output = load_graph(model_path)
    
        x = tf_model.get_tensor_by_name(tf_input)
        y = tf_model.get_tensor_by_name(tf_output)
        y_list = tf.unstack(y)
        num_outputs = y.shape.as_list()[0]
        jacobian = np.zeros((num_outputs,input_data.shape[0],input_data.shape[1]))
        for i in range(input_data.shape[0]):
            with tf.Session(graph=tf_model) as sess:
                y_out = sess.run([tf.gradients(y_, x)[0] for y_ in y_list], feed_dict={x: input_data[i:i+1]})
                jac_temp = np.asarray(y_out)
            jacobian[:,i:i+1,:]=jac_temp[:,:,:,0]
        return jacobian
    

    计算雅可比矩阵:

    jacobians = compute_jacobian(tf_model_path,test_data)
    


知识点
面圈网VIP题库

面圈网VIP题库全新上线,海量真题题库资源。 90大类考试,超10万份考试真题开放下载啦

去下载看看