分层数据:为每个节点有效地构建每个后代的列表
我有两列数据集,描述了形成一棵大树的多个子父母关系。我想使用它为每个节点建立每个后代的更新列表。
原始输入:
child parent
1 2010 1000
7 2100 1000
5 2110 1000
3 3000 2110
2 3011 2010
4 3033 2100
0 3102 2010
6 3111 2110
关系的图形描述:
预期产量:
descendant ancestor
0 2010 1000
1 2100 1000
2 2110 1000
3 3000 1000
4 3011 1000
5 3033 1000
6 3102 1000
7 3111 1000
8 3011 2010
9 3102 2010
10 3033 2100
11 3000 2110
12 3111 2110
最初,我决定对DataFrames使用递归解决方案。它可以按预期工作,但是Pandas效率很低。我的研究使我相信,使用NumPy数组(或其他简单数据结构)的实现在大型数据集(成千上万的记录中有10个)上会快得多。
使用数据帧的解决方案:
import pandas as pd
df = pd.DataFrame(
{
'child': [3102, 2010, 3011, 3000, 3033, 2110, 3111, 2100],
'parent': [2010, 1000, 2010, 2110, 2100, 1000, 2110, 1000]
}, columns=['child', 'parent']
)
def get_ancestry_dataframe_flat(df):
def get_child_list(parent_id):
list_of_children = list()
list_of_children.append(df[df['parent'] == parent_id]['child'].values)
for i, r in df[df['parent'] == parent_id].iterrows():
if r['child'] != parent_id:
list_of_children.append(get_child_list(r['child']))
# flatten list
list_of_children = [item for sublist in list_of_children for item in sublist]
return list_of_children
new_df = pd.DataFrame(columns=['descendant', 'ancestor']).astype(int)
for index, row in df.iterrows():
temp_df = pd.DataFrame(columns=['descendant', 'ancestor'])
temp_df['descendant'] = pd.Series(get_child_list(row['parent']))
temp_df['ancestor'] = row['parent']
new_df = new_df.append(temp_df)
new_df = new_df\
.drop_duplicates()\
.sort_values(['ancestor', 'descendant'])\
.reset_index(drop=True)
return new_df
因为以这种方式使用pandas DataFrames在大型数据集上效率很低, 所以我需要提高此操作的性能。
我的理解是,这可以通过使用更适合循环和递归的更有效的数据结构来完成。我想以最有效的方式执行相同的操作。
具体来说,我要求 优化速度。
-
这是一种使用numpy一次遍历树的方法。
码:
import numpy as np import pandas as pd # only used to return a dataframe def list_ancestors(edges): """ Take edge list of a rooted tree as a numpy array with shape (E, 2), child nodes in edges[:, 0], parent nodes in edges[:, 1] Return pandas dataframe of all descendant/ancestor node pairs Ex: df = pd.DataFrame({'child': [200, 201, 300, 301, 302, 400], 'parent': [100, 100, 200, 200, 201, 300]}) df child parent 0 200 100 1 201 100 2 300 200 3 301 200 4 302 201 5 400 300 list_ancestors(df.values) returns descendant ancestor 0 200 100 1 201 100 2 300 200 3 300 100 4 301 200 5 301 100 6 302 201 7 302 100 8 400 300 9 400 200 10 400 100 """ ancestors = [] for ar in trace_nodes(edges): ancestors.append(np.c_[np.repeat(ar[:, 0], ar.shape[1]-1), ar[:, 1:].flatten()]) return pd.DataFrame(np.concatenate(ancestors), columns=['descendant', 'ancestor']) def trace_nodes(edges): """ Take edge list of a rooted tree as a numpy array with shape (E, 2), child nodes in edges[:, 0], parent nodes in edges[:, 1] Yield numpy array with cross-section of tree and associated ancestor nodes Ex: df = pd.DataFrame({'child': [200, 201, 300, 301, 302, 400], 'parent': [100, 100, 200, 200, 201, 300]}) df child parent 0 200 100 1 201 100 2 300 200 3 301 200 4 302 201 5 400 300 trace_nodes(df.values) yields array([[200, 100], [201, 100]]) array([[300, 200, 100], [301, 200, 100], [302, 201, 100]]) array([[400, 300, 200, 100]]) """ mask = np.in1d(edges[:, 1], edges[:, 0]) gen_branches = edges[~mask] edges = edges[mask] yield gen_branches while edges.size != 0: mask = np.in1d(edges[:, 1], edges[:, 0]) next_gen = edges[~mask] gen_branches = numpy_col_inner_many_to_one_join(next_gen, gen_branches) edges = edges[mask] yield gen_branches def numpy_col_inner_many_to_one_join(ar1, ar2): """ Take two 2-d numpy arrays ar1 and ar2, with no duplicate values in first column of ar2 Return inner join of ar1 and ar2 on last column of ar1, first column of ar2 Ex: ar1 = np.array([[1, 2, 3], [4, 5, 3], [6, 7, 8], [9, 10, 11]]) ar2 = np.array([[ 1, 2], [ 3, 4], [ 5, 6], [ 7, 8], [ 9, 10], [11, 12]]) numpy_col_inner_many_to_one_join(ar1, ar2) returns array([[ 1, 2, 3, 4], [ 4, 5, 3, 4], [ 9, 10, 11, 12]]) """ ar1 = ar1[np.in1d(ar1[:, -1], ar2[:, 0])] ar2 = ar2[np.in1d(ar2[:, 0], ar1[:, -1])] if 'int' in ar1.dtype.name and ar1[:, -1].min() >= 0: bins = np.bincount(ar1[:, -1]) counts = bins[bins.nonzero()[0]] else: counts = np.unique(ar1[:, -1], False, False, True)[1] left = ar1[ar1[:, -1].argsort()] right = ar2[ar2[:, 0].argsort()] return np.concatenate([left[:, :-1], right[np.repeat(np.arange(right.shape[0]), counts)]], 1)
时序比较:
@ taky2提供的测试用例1和2,测试用例3和4分别比较了高大和阔树结构的性能-大多数用例可能在中间。
df = pd.DataFrame( { 'child': [3102, 2010, 3011, 3000, 3033, 2110, 3111, 2100], 'parent': [2010, 1000, 2010, 2110, 2100, 1000, 2110, 1000] } ) df2 = pd.DataFrame( { 'child': [4321, 3102, 4023, 2010, 5321, 4200, 4113, 6525, 4010, 4001, 3011, 5010, 3000, 3033, 2110, 6100, 3111, 2100, 6016, 4311], 'parent': [3111, 2010, 3000, 1000, 4023, 3011, 3033, 5010, 3011, 3102, 2010, 4023, 2110, 2100, 1000, 5010, 2110, 1000, 5010, 3033] } ) df3 = pd.DataFrame(np.r_[np.c_[np.arange(1, 501), np.arange(500)], np.c_[np.arange(501, 1001), np.arange(500)]], columns=['child', 'parent']) df4 = pd.DataFrame(np.r_[np.c_[np.arange(1, 101), np.repeat(0, 100)], np.c_[np.arange(1001, 11001), np.repeat(np.arange(1, 101), 100)]], columns=['child', 'parent']) %timeit get_ancestry_dataframe_flat(df) 10 loops, best of 3: 53.4 ms per loop %timeit add_children_of_children(df) 1000 loops, best of 3: 1.13 ms per loop %timeit all_descendants_nx(df) 1000 loops, best of 3: 675 µs per loop %timeit list_ancestors(df.values) 1000 loops, best of 3: 391 µs per loop %timeit get_ancestry_dataframe_flat(df2) 10 loops, best of 3: 168 ms per loop %timeit add_children_of_children(df2) 1000 loops, best of 3: 1.8 ms per loop %timeit all_descendants_nx(df2) 1000 loops, best of 3: 1.06 ms per loop %timeit list_ancestors(df2.values) 1000 loops, best of 3: 933 µs per loop %timeit add_children_of_children(df3) 10 loops, best of 3: 156 ms per loop %timeit all_descendants_nx(df3) 1 loop, best of 3: 952 ms per loop %timeit list_ancestors(df3.values) 10 loops, best of 3: 104 ms per loop %timeit add_children_of_children(df4) 1 loop, best of 3: 503 ms per loop %timeit all_descendants_nx(df4) 1 loop, best of 3: 238 ms per loop %timeit list_ancestors(df4.values) 100 loops, best of 3: 2.96 ms per loop
笔记:
get_ancestry_dataframe_flat
由于时间和记忆的原因,未对情况3和4进行计时。add_children_of_children
修改为在内部标识根节点,但允许采用唯一的根。root_node = (set(dataframe.parent) - set(dataframe.child)).pop()
添加第一行。all_descendants_nx
修改为接受数据框作为参数,而不是从外部名称空间提取。演示正确行为的示例:
np.all(get_ancestry_dataframe_flat(df2).sort_values(['descendant', 'ancestor'])\ .reset_index(drop=True) ==\ list_ancestors(df2.values).sort_values(['descendant', 'ancestor'])\ .reset_index(drop=True)) Out[20]: True