分层数据:为每个节点有效地构建每个后代的列表

发布于 2021-01-29 15:05:58

我有两列数据集,描述了形成一棵大树的多个子父母关系。我想使用它为每个节点建立每个后代的更新列表。

原始输入:

   child  parent
1   2010    1000
7   2100    1000
5   2110    1000
3   3000    2110
2   3011    2010
4   3033    2100
0   3102    2010
6   3111    2110

关系的图形描述:

示例数据关系树

预期产量:

    descendant  ancestor
0         2010      1000
1         2100      1000
2         2110      1000
3         3000      1000
4         3011      1000
5         3033      1000
6         3102      1000
7         3111      1000
8         3011      2010
9         3102      2010
10        3033      2100
11        3000      2110
12        3111      2110

最初,我决定对DataFrames使用递归解决方案。它可以按预期工作,但是Pandas效率很低。我的研究使我相信,使用NumPy数组(或其他简单数据结构)的实现在大型数据集(成千上万的记录中有10个)上会快得多。

使用数据帧的解决方案:

import pandas as pd

df = pd.DataFrame(
    {
        'child':     [3102, 2010, 3011, 3000, 3033, 2110, 3111, 2100],
        'parent':    [2010, 1000, 2010, 2110, 2100, 1000, 2110, 1000]
    },  columns=['child', 'parent']
)


def get_ancestry_dataframe_flat(df):

    def get_child_list(parent_id):

        list_of_children = list()
        list_of_children.append(df[df['parent'] == parent_id]['child'].values)

        for i, r in df[df['parent'] == parent_id].iterrows():
            if r['child'] != parent_id:
                list_of_children.append(get_child_list(r['child']))

        # flatten list
        list_of_children = [item for sublist in list_of_children for item in sublist]
        return list_of_children

    new_df = pd.DataFrame(columns=['descendant', 'ancestor']).astype(int)
    for index, row in df.iterrows():
        temp_df = pd.DataFrame(columns=['descendant', 'ancestor'])
        temp_df['descendant'] = pd.Series(get_child_list(row['parent']))
        temp_df['ancestor'] = row['parent']
        new_df = new_df.append(temp_df)

    new_df = new_df\
        .drop_duplicates()\
        .sort_values(['ancestor', 'descendant'])\
        .reset_index(drop=True)

    return new_df

因为以这种方式使用pandas DataFrames在大型数据集上效率很低, 所以我需要提高此操作的性能。
我的理解是,这可以通过使用更适合循环和递归的更有效的数据结构来完成。我想以最有效的方式执行相同的操作。

具体来说,我要求 优化速度。

关注者
0
被浏览
92
1 个回答
  • 面试哥
    面试哥 2021-01-29
    为面试而生,有面试问题,就找面试哥。

    这是一种使用numpy一次遍历树的方法。

    码:

    import numpy as np
    import pandas as pd  # only used to return a dataframe
    
    
    def list_ancestors(edges):
        """
        Take edge list of a rooted tree as a numpy array with shape (E, 2),
        child nodes in edges[:, 0], parent nodes in edges[:, 1]
        Return pandas dataframe of all descendant/ancestor node pairs
    
        Ex:
            df = pd.DataFrame({'child': [200, 201, 300, 301, 302, 400],
                               'parent': [100, 100, 200, 200, 201, 300]})
    
            df
               child  parent
            0    200     100
            1    201     100
            2    300     200
            3    301     200
            4    302     201
            5    400     300
    
            list_ancestors(df.values)
    
            returns
    
                descendant  ancestor
            0          200       100
            1          201       100
            2          300       200
            3          300       100
            4          301       200
            5          301       100
            6          302       201
            7          302       100
            8          400       300
            9          400       200
            10         400       100
        """
        ancestors = []
        for ar in trace_nodes(edges):
            ancestors.append(np.c_[np.repeat(ar[:, 0], ar.shape[1]-1),
                                   ar[:, 1:].flatten()])
        return pd.DataFrame(np.concatenate(ancestors),
                            columns=['descendant', 'ancestor'])
    
    
    def trace_nodes(edges):
        """
        Take edge list of a rooted tree as a numpy array with shape (E, 2),
        child nodes in edges[:, 0], parent nodes in edges[:, 1]
        Yield numpy array with cross-section of tree and associated
        ancestor nodes
    
        Ex:
            df = pd.DataFrame({'child': [200, 201, 300, 301, 302, 400],
                               'parent': [100, 100, 200, 200, 201, 300]})
    
            df
               child  parent
            0    200     100
            1    201     100
            2    300     200
            3    301     200
            4    302     201
            5    400     300
    
            trace_nodes(df.values)
    
            yields
    
            array([[200, 100],
                   [201, 100]])
    
            array([[300, 200, 100],
                   [301, 200, 100],
                   [302, 201, 100]])
    
            array([[400, 300, 200, 100]])
        """
        mask = np.in1d(edges[:, 1], edges[:, 0])
        gen_branches = edges[~mask]
        edges = edges[mask]
        yield gen_branches
        while edges.size != 0:
            mask = np.in1d(edges[:, 1], edges[:, 0])
            next_gen = edges[~mask]
            gen_branches = numpy_col_inner_many_to_one_join(next_gen, gen_branches)
            edges = edges[mask]
            yield gen_branches
    
    
    def numpy_col_inner_many_to_one_join(ar1, ar2):
        """
        Take two 2-d numpy arrays ar1 and ar2,
        with no duplicate values in first column of ar2
        Return inner join of ar1 and ar2 on
        last column of ar1, first column of ar2
    
        Ex:
    
            ar1 = np.array([[1,  2,  3],
                            [4,  5,  3],
                            [6,  7,  8],
                            [9, 10, 11]])
    
            ar2 = np.array([[ 1,  2],
                            [ 3,  4],
                            [ 5,  6],
                            [ 7,  8],
                            [ 9, 10],
                            [11, 12]])
    
            numpy_col_inner_many_to_one_join(ar1, ar2)
    
            returns
    
            array([[ 1,  2,  3,  4],
                   [ 4,  5,  3,  4],
                   [ 9, 10, 11, 12]])
        """
        ar1 = ar1[np.in1d(ar1[:, -1], ar2[:, 0])]
        ar2 = ar2[np.in1d(ar2[:, 0], ar1[:, -1])]
        if 'int' in ar1.dtype.name and ar1[:, -1].min() >= 0:
            bins = np.bincount(ar1[:, -1])
            counts = bins[bins.nonzero()[0]]
        else:
            counts = np.unique(ar1[:, -1], False, False, True)[1]
        left = ar1[ar1[:, -1].argsort()]
        right = ar2[ar2[:, 0].argsort()]
        return np.concatenate([left[:, :-1],
                               right[np.repeat(np.arange(right.shape[0]),
                                               counts)]], 1)
    

    时序比较:

    @ taky2提供的测试用例1和2,测试用例3和4分别比较了高大和阔树结构的性能-大多数用例可能在中间。

    df = pd.DataFrame(
        {
            'child': [3102, 2010, 3011, 3000, 3033, 2110, 3111, 2100],
            'parent': [2010, 1000, 2010, 2110, 2100, 1000, 2110, 1000]
        }
    )
    
    df2 = pd.DataFrame(
        {
            'child': [4321, 3102, 4023, 2010, 5321, 4200, 4113, 6525, 4010, 4001,
                      3011, 5010, 3000, 3033, 2110, 6100, 3111, 2100, 6016, 4311],
            'parent': [3111, 2010, 3000, 1000, 4023, 3011, 3033, 5010, 3011, 3102,
                       2010, 4023, 2110, 2100, 1000, 5010, 2110, 1000, 5010, 3033]
        }
    )
    
    df3 = pd.DataFrame(np.r_[np.c_[np.arange(1, 501), np.arange(500)],
                             np.c_[np.arange(501, 1001), np.arange(500)]],
                       columns=['child', 'parent'])
    
    df4 = pd.DataFrame(np.r_[np.c_[np.arange(1, 101), np.repeat(0, 100)],
                             np.c_[np.arange(1001, 11001),
                                   np.repeat(np.arange(1, 101), 100)]],
                       columns=['child', 'parent'])
    
    %timeit get_ancestry_dataframe_flat(df)
    10 loops, best of 3: 53.4 ms per loop
    
    %timeit add_children_of_children(df)
    1000 loops, best of 3: 1.13 ms per loop
    
    %timeit all_descendants_nx(df)
    1000 loops, best of 3: 675 µs per loop
    
    %timeit list_ancestors(df.values)
    1000 loops, best of 3: 391 µs per loop
    
    %timeit get_ancestry_dataframe_flat(df2)
    10 loops, best of 3: 168 ms per loop
    
    %timeit add_children_of_children(df2)
    1000 loops, best of 3: 1.8 ms per loop
    
    %timeit all_descendants_nx(df2)
    1000 loops, best of 3: 1.06 ms per loop
    
    %timeit list_ancestors(df2.values)
    1000 loops, best of 3: 933 µs per loop
    
    %timeit add_children_of_children(df3)
    10 loops, best of 3: 156 ms per loop
    
    %timeit all_descendants_nx(df3)
    1 loop, best of 3: 952 ms per loop
    
    %timeit list_ancestors(df3.values)
    10 loops, best of 3: 104 ms per loop
    
    %timeit add_children_of_children(df4)
    1 loop, best of 3: 503 ms per loop
    
    %timeit all_descendants_nx(df4)
    1 loop, best of 3: 238 ms per loop
    
    %timeit list_ancestors(df4.values)
    100 loops, best of 3: 2.96 ms per loop
    

    笔记:

    get_ancestry_dataframe_flat 由于时间和记忆的原因,未对情况3和4进行计时。

    add_children_of_children修改为在内部标识根节点,但允许采用唯一的根。root_node = (set(dataframe.parent) - set(dataframe.child)).pop()添加第一行。

    all_descendants_nx 修改为接受数据框作为参数,而不是从外部名称空间提取。

    演示正确行为的示例:

    np.all(get_ancestry_dataframe_flat(df2).sort_values(['descendant', 'ancestor'])\
                                           .reset_index(drop=True) ==\
           list_ancestors(df2.values).sort_values(['descendant', 'ancestor'])\
                                     .reset_index(drop=True))
    Out[20]: True
    


知识点
面圈网VIP题库

面圈网VIP题库全新上线,海量真题题库资源。 90大类考试,超10万份考试真题开放下载啦

去下载看看