熊猫groupby:每组前3个值
在 pandas groupby上发布了一个新的更通用的问题:每个组中的前3个值并存储在DataFrame中,并且在那里已经找到了可行的解决方案。
在此示例中,我创建了一个数据帧df
,其中的一些随机数据间隔为5分钟。我想创建一个数据框gdf
( df分组 ),其中列出了每小时的
3个最高值 。
即:从这一系列价值
VAL
TIME
2017-12-08 00:00:00 29
2017-12-08 00:05:00 56
2017-12-08 00:10:00 82
2017-12-08 00:15:00 13
2017-12-08 00:20:00 35
2017-12-08 00:25:00 53
2017-12-08 00:30:00 25
2017-12-08 00:35:00 23
2017-12-08 00:40:00 21
2017-12-08 00:45:00 12
2017-12-08 00:50:00 15
2017-12-08 00:55:00 9
2017-12-08 01:00:00 13
2017-12-08 01:05:00 87
2017-12-08 01:10:00 9
2017-12-08 01:15:00 63
2017-12-08 01:20:00 62
2017-12-08 01:25:00 52
2017-12-08 01:30:00 43
2017-12-08 01:35:00 77
2017-12-08 01:40:00 95
2017-12-08 01:45:00 79
2017-12-08 01:50:00 77
2017-12-08 01:55:00 5
2017-12-08 02:00:00 78
2017-12-08 02:05:00 41
2017-12-08 02:10:00 10
2017-12-08 02:15:00 10
2017-12-08 02:20:00 88
我非常接近解决方案,但我找不到最后一步的正确语法。我到现在为止(largest3
)的结果是:
VAL
TIME TIME
2017-12-08 00:00:00 2017-12-08 00:10:00 82
2017-12-08 00:05:00 56
2017-12-08 00:25:00 53
2017-12-08 01:00:00 2017-12-08 01:40:00 95
2017-12-08 01:05:00 87
2017-12-08 01:45:00 79
2017-12-08 02:00:00 2017-12-08 02:20:00 88
2017-12-08 02:00:00 78
2017-12-08 02:05:00 41
我想从中获取此信息gdf
(达到每个最大值的时间并不重要):
VAL1 VAL2 VAL3
TIME
2017-12-08 00:00:00 82 56 53
2017-12-08 01:00:00 95 87 79
2017-12-08 02:00:00 88 78 41
这是代码:
import pandas as pd
from datetime import *
import numpy as np
# test data
df = pd.DataFrame()
date_ref = datetime(2017,12,8,0,0,0)
days = pd.date_range(date_ref, date_ref + timedelta(0.1), freq='5min')
np.random.seed(seed=1111)
data1 = np.random.randint(1, high=100, size=len(days))
df = pd.DataFrame({'TIME': days, 'VAL': data1})
df = df.set_index('TIME')
print(df)
print("----")
# groupby
group1 = df.groupby(pd.Grouper(freq='1H'))
largest3 = pd.DataFrame(group1['VAL'].nlargest(3))
print(largest3)
gdf = pd.DataFrame()
# ???? <-------------------
先感谢您。
-
注意:仅当每个组至少有3行时,此解决方案才有效
请尝试以下方法:
In [59]: x = (df.groupby(pd.Grouper(freq='H'))['VAL'] .apply(lambda x: x.nlargest(3)) .reset_index(level=1, drop=True) .to_frame('VAL')) In [60]: x Out[60]: VAL TIME 2017-12-08 00:00:00 82 2017-12-08 00:00:00 56 2017-12-08 00:00:00 53 2017-12-08 01:00:00 95 2017-12-08 01:00:00 87 2017-12-08 01:00:00 79 2017-12-08 02:00:00 88 2017-12-08 02:00:00 78 2017-12-08 02:00:00 41 In [61]: x.set_index(np.arange(len(x)) % 3, append=True)['VAL'].unstack().add_prefix('VAL') Out[61]: VAL0 VAL1 VAL2 TIME 2017-12-08 00:00:00 82 56 53 2017-12-08 01:00:00 95 87 79 2017-12-08 02:00:00 88 78 41
一些解释:
In [94]: x.set_index(np.arange(len(x)) % 3, append=True) Out[94]: VAL TIME 2017-12-08 00:00:00 0 82 1 56 2 53 2017-12-08 01:00:00 0 95 1 87 2 79 2017-12-08 02:00:00 0 88 1 78 2 41 In [95]: x.set_index(np.arange(len(x)) % 3, append=True)['VAL'].unstack() Out[95]: 0 1 2 TIME 2017-12-08 00:00:00 82 56 53 2017-12-08 01:00:00 95 87 79 2017-12-08 02:00:00 88 78 41