绘制scikit-learn(sklearn)SVM决策边界/曲面

发布于 2021-01-29 14:57:37

我目前正在使用python的scikit库使用线性内核执行多类SVM。样本训练数据和测试数据如下:

型号数据:

x = [[20,32,45,33,32,44,0],[23,32,45,12,32,66,11],[16,32,45,12,32,44,23],[120,2,55,62,82,14,81],[30,222,115,12,42,64,91],[220,12,55,222,82,14,181],[30,222,315,12,222,64,111]]
y = [0,0,0,1,1,2,2]

我想绘制决策边界并可视化数据集。有人可以帮忙绘制此类数据吗?

上面给出的数据只是模拟数据,因此可以随时更改值。如果至少您可以建议要执行的步骤,这将很有帮助。提前致谢

关注者
0
被浏览
92
1 个回答
  • 面试哥
    面试哥 2021-01-29
    为面试而生,有面试问题,就找面试哥。

    您只需选择2个功能即可。 原因是您无法绘制7D图。选择2个要素后,仅将其用于决策面的可视化。

    (我还在这里写过一篇文章:[https](https://towardsdatascience.com/support-vector-machines-
    svm-clearly-explained-a-python-tutorial-for-classification-
    problems-29c539f3ad8?source=friends_link&sk=80f72ab272550d76a0cc3730d7c8af35)
    //towardsdatascience.com/support-vector-machines-svm-clearly-explained-a-
    python-tutorial-for-classification-
    problems-29c539f3ad8?source=friends_link&sk=80f72ab272550d76a0cc3730d7c8af35


    现在,您要问的下一个问题: 如何选择这两个功能? 。好吧,有很多方法。您可以进行 单变量F值(功能排名)测试,
    并查看哪些功能/变量最重要。然后,您可以将这些用于绘图。此外,例如,我们可以使用 PCA 将尺寸从7减少到2 。


    2个要素的2D图并使用虹膜数据集

    from sklearn.svm import SVC
    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn import svm, datasets
    
    iris = datasets.load_iris()
    # Select 2 features / variable for the 2D plot that we are going to create.
    X = iris.data[:, :2]  # we only take the first two features.
    y = iris.target
    
    def make_meshgrid(x, y, h=.02):
        x_min, x_max = x.min() - 1, x.max() + 1
        y_min, y_max = y.min() - 1, y.max() + 1
        xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
        return xx, yy
    
    def plot_contours(ax, clf, xx, yy, **params):
        Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
        Z = Z.reshape(xx.shape)
        out = ax.contourf(xx, yy, Z, **params)
        return out
    
    model = svm.SVC(kernel='linear')
    clf = model.fit(X, y)
    
    fig, ax = plt.subplots()
    # title for the plots
    title = ('Decision surface of linear SVC ')
    # Set-up grid for plotting.
    X0, X1 = X[:, 0], X[:, 1]
    xx, yy = make_meshgrid(X0, X1)
    
    plot_contours(ax, clf, xx, yy, cmap=plt.cm.coolwarm, alpha=0.8)
    ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k')
    ax.set_ylabel('y label here')
    ax.set_xlabel('x label here')
    ax.set_xticks(())
    ax.set_yticks(())
    ax.set_title(title)
    ax.legend()
    plt.show()
    

    在此处输入图片说明


    编辑:应用PCA以减少尺寸。

    from sklearn.svm import SVC
    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn import svm, datasets
    from sklearn.decomposition import PCA
    
    iris = datasets.load_iris()
    
    X = iris.data  
    y = iris.target
    
    pca = PCA(n_components=2)
    Xreduced = pca.fit_transform(X)
    
    def make_meshgrid(x, y, h=.02):
        x_min, x_max = x.min() - 1, x.max() + 1
        y_min, y_max = y.min() - 1, y.max() + 1
        xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
        return xx, yy
    
    def plot_contours(ax, clf, xx, yy, **params):
        Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
        Z = Z.reshape(xx.shape)
        out = ax.contourf(xx, yy, Z, **params)
        return out
    
    model = svm.SVC(kernel='linear')
    clf = model.fit(Xreduced, y)
    
    fig, ax = plt.subplots()
    # title for the plots
    title = ('Decision surface of linear SVC ')
    # Set-up grid for plotting.
    X0, X1 = Xreduced[:, 0], Xreduced[:, 1]
    xx, yy = make_meshgrid(X0, X1)
    
    plot_contours(ax, clf, xx, yy, cmap=plt.cm.coolwarm, alpha=0.8)
    ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k')
    ax.set_ylabel('PC2')
    ax.set_xlabel('PC1')
    ax.set_xticks(())
    ax.set_yticks(())
    ax.set_title('Decison surface using the PCA transformed/projected features')
    ax.legend()
    plt.show()
    

    在此处输入图片说明


    编辑1(2020年4月15日):

    案例:3个特征的3D图并使用虹膜数据集

    from sklearn.svm import SVC
    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn import svm, datasets
    from mpl_toolkits.mplot3d import Axes3D
    
    iris = datasets.load_iris()
    X = iris.data[:, :3]  # we only take the first three features.
    Y = iris.target
    
    #make it binary classification problem
    X = X[np.logical_or(Y==0,Y==1)]
    Y = Y[np.logical_or(Y==0,Y==1)]
    
    model = svm.SVC(kernel='linear')
    clf = model.fit(X, Y)
    
    # The equation of the separating plane is given by all x so that np.dot(svc.coef_[0], x) + b = 0.
    # Solve for w3 (z)
    z = lambda x,y: (-clf.intercept_[0]-clf.coef_[0][0]*x -clf.coef_[0][1]*y) / clf.coef_[0][2]
    
    tmp = np.linspace(-5,5,30)
    x,y = np.meshgrid(tmp,tmp)
    
    fig = plt.figure()
    ax  = fig.add_subplot(111, projection='3d')
    ax.plot3D(X[Y==0,0], X[Y==0,1], X[Y==0,2],'ob')
    ax.plot3D(X[Y==1,0], X[Y==1,1], X[Y==1,2],'sr')
    ax.plot_surface(x, y, z(x,y))
    ax.view_init(30, 60)
    plt.show()
    

    在此处输入图片说明



知识点
面圈网VIP题库

面圈网VIP题库全新上线,海量真题题库资源。 90大类考试,超10万份考试真题开放下载啦

去下载看看