在二维二进制矩阵中找到孤岛的数量
发布于 2021-01-29 14:56:03
我试图计算二维二进制矩阵中的孤岛数量(一组相连的1组成一个孤岛)。
例:
[
[1, 1, 0, 0, 0],
[0, 1, 0, 0, 1],
[1, 0, 0, 1, 1],
[0, 0, 0, 0, 0],
[1, 0, 1, 0, 1]
]
在上面的矩阵中,有5个岛,分别是:
First: (0,0), (0,1), (1,1), (2,0)
Second: (1,4), (2,3), (2,4)
Third: (4,0)
Fourth: (4,2)
Fifth: (4,4)
为了计算2D矩阵中的孤岛数量,我假设矩阵为图,然后使用DFS类型的算法对孤岛进行计数。
我一直在跟踪DFS(递归函数)调用的数量,因为在Graph中有很多组件。
下面是我为此目的编写的代码:
# count the 1's in the island
def count_houses(mat, visited, i, j):
# base case
if i < 0 or i >= len(mat) or j < 0 or j >= len(mat[0]) or\
visited[i][j] is True or mat[i][j] == 0:
return 0
# marking visited at i, j
visited[i][j] = True
# cnt is initialized to 1 coz 1 is found
cnt = 1
# now go in all possible directions (i.e. form 8 branches)
# starting from the left upper corner of i,j and going down to right bottom
# corner of i,j
for r in xrange(i-1, i+2, 1):
for c in xrange(j-1, j+2, 1):
# print 'r:', r
# print 'c:', c
# don't call for i, j
if r != i and c != j:
cnt += count_houses(mat, visited, r, c)
return cnt
def island_count(mat):
houses = list()
clusters = 0
row = len(mat)
col = len(mat[0])
# initialize the visited matrix
visited = [[False for i in xrange(col)] for j in xrange(row)]
# run over matrix, search for 1 and then do dfs when found 1
for i in xrange(row):
for j in xrange(col):
# see if value at i, j is 1 in mat and val at i, j is False in
# visited
if mat[i][j] == 1 and visited[i][j] is False:
clusters += 1
h = count_houses(mat, visited, i, j)
houses.append(h)
print 'clusters:', clusters
return houses
if __name__ == '__main__':
mat = [
[1, 1, 0, 0, 0],
[0, 1, 0, 0, 1],
[1, 0, 0, 1, 1],
[0, 0, 0, 0, 0],
[1, 0, 1, 0, 1]
]
houses = island_count(mat)
print houses
# print 'maximum houses:', max(houses)
我传入参数的矩阵输出错误。我知道了,7
但是有5
集群。
我尝试调试任何逻辑错误的代码。但是我找不到问题所在。
关注者
0
被浏览
159
1 个回答