在keras自定义层中进行广播的逐元素乘法
我正在创建一个自定义图层,其权重需要在激活之前乘以逐个元素。当输出和输入的形状相同时,我可以使它工作。当我将一阶数组作为输入,将二阶数组作为输出时,会发生问题。tensorflow.multiply支持广播,但是当我尝试在Layer.call(x,self.kernel)中使用它来将x与self.kernel变量相乘时,它抱怨它们是不同的形状,说:
ValueError: Dimensions must be equal, but are 4 and 3 for 'my_layer_1/Mul' (op: 'Mul') with input shapes: [?,4], [4,3].
这是我的代码:
from keras import backend as K
from keras.engine.topology import Layer
import tensorflow as tf
from keras.models import Sequential
import numpy as np
class MyLayer(Layer):
def __init__(self, output_dims, **kwargs):
self.output_dims = output_dims
super(MyLayer, self).__init__(**kwargs)
def build(self, input_shape):
# Create a trainable weight variable for this layer.
self.kernel = self.add_weight(name='kernel',
shape=self.output_dims,
initializer='ones',
trainable=True)
super(MyLayer, self).build(input_shape) # Be sure to call this somewhere!
def call(self, x):
#multiply wont work here?
return K.tf.multiply(x, self.kernel)
def compute_output_shape(self, input_shape):
return (self.output_dims)
mInput = np.array([[1,2,3,4]])
inShape = (4,)
net = Sequential()
outShape = (4,3)
l1 = MyLayer(outShape, input_shape= inShape)
net.add(l1)
net.compile(loss='mean_absolute_error', optimizer='adam', metrics=['accuracy'])
p = net.predict(x=mInput, batch_size=1)
print(p)
编辑:给定输入形状(4,)和输出形状(4,3),权重矩阵应与输出形状相同,并用1进行初始化。因此,在上面的代码中,输入为[1,2,3,4],权重矩阵应为[[1,1,1,1],[1,1,1,1],[1,1,1
,1]],输出应类似于[[1,2,3,4],[1,2,3,4],[1,2,3,4]]
-
乘法之前,您需要重复元素以增加形状。您可以使用
K.repeat_elements
它。(import keras.backend as K
)class MyLayer(Layer): #there are some difficulties for different types of shapes #let's use a 'repeat_count' instead, increasing only one dimension def __init__(self, repeat_count,**kwargs): self.repeat_count = repeat_count super(MyLayer, self).__init__(**kwargs) def build(self, input_shape): #first, let's get the output_shape output_shape = self.compute_output_shape(input_shape) weight_shape = (1,) + output_shape[1:] #replace the batch size by 1 self.kernel = self.add_weight(name='kernel', shape=weight_shape, initializer='ones', trainable=True) super(MyLayer, self).build(input_shape) # Be sure to call this somewhere! #here, we need to repeat the elements before multiplying def call(self, x): if self.repeat_count > 1: #we add the extra dimension: x = K.expand_dims(x, axis=1) #we replicate the elements x = K.repeat_elements(x, rep=self.repeat_count, axis=1) #multiply return x * self.kernel #make sure we comput the ouptut shape according to what we did in "call" def compute_output_shape(self, input_shape): if self.repeat_count > 1: return (input_shape[0],self.repeat_count) + input_shape[1:] else: return input_shape