如何在python中以编程方式为caffe生成deploy.txt
我编写了python代码,以编程方式生成卷积神经网络(CNN),用于训练和验证caffe中的.prototxt文件。下面是我的功能:
def custom_net(lmdb, batch_size):
# define your own net!
n = caffe.NetSpec()
# keep this data layer for all networks
n.data, n.label = L.Data(batch_size=batch_size, backend=P.Data.LMDB, source=lmdb,
ntop=2, transform_param=dict(scale=1. / 255))
n.conv1 = L.Convolution(n.data, kernel_size=6,
num_output=48, weight_filler=dict(type='xavier'))
n.pool1 = L.Pooling(n.conv1, kernel_size=2, stride=2, pool=P.Pooling.MAX)
n.conv2 = L.Convolution(n.pool1, kernel_size=5,
num_output=48, weight_filler=dict(type='xavier'))
n.pool2 = L.Pooling(n.conv2, kernel_size=2, stride=2, pool=P.Pooling.MAX)
n.conv3 = L.Convolution(n.pool2, kernel_size=4,
num_output=48, weight_filler=dict(type='xavier'))
n.pool3 = L.Pooling(n.conv3, kernel_size=2, stride=2, pool=P.Pooling.MAX)
n.conv4 = L.Convolution(n.pool3, kernel_size=2,
num_output=48, weight_filler=dict(type='xavier'))
n.pool4 = L.Pooling(n.conv4, kernel_size=2, stride=2, pool=P.Pooling.MAX)
n.fc1 = L.InnerProduct(n.pool4, num_output=50,
weight_filler=dict(type='xavier'))
n.drop1 = L.Dropout(n.fc1, dropout_param=dict(dropout_ratio=0.5))
n.score = L.InnerProduct(n.drop1, num_output=2,
weight_filler=dict(type='xavier'))
# keep this loss layer for all networks
n.loss = L.SoftmaxWithLoss(n.score, n.label)
return n.to_proto()
with open('net_train.prototxt', 'w') as f:
f.write(str(custom_net(train_lmdb_path, train_batch_size)))
with open('net_test.prototxt', 'w') as f:
f.write(str(custom_net(test_lmdb_path, test_batch_size)))
有没有办法类似地生成deploy.prototxt以测试不在lmdb文件中的看不见的数据?如果是这样的话,如果有人可以给我提供参考,我将不胜感激。
-
很简单:
from caffe import layers as L, params as P def custom_net(lmdb, batch_size): # define your own net! n = caffe.NetSpec() if lmdb is None: # "deploy" flavor # assuming your data is of shape 3x224x224 n.data = L.Input(input_param={'shape':{'dim':[1,3,224,224]}}) else: # keep this data layer for all networks n.data, n.label = L.Data(batch_size=batch_size, backend=P.Data.LMDB, source=lmdb, ntop=2, transform_param=dict(scale=1. / 255)) # the other layers common to all flavors: train/val/deploy... n.conv1 = L.Convolution(n.data, kernel_size=6, num_output=48, weight_filler=dict(type='xavier')) n.pool1 = L.Pooling(n.conv1, kernel_size=2, stride=2, pool=P.Pooling.MAX) n.conv2 = L.Convolution(n.pool1, kernel_size=5, num_output=48, weight_filler=dict(type='xavier')) n.pool2 = L.Pooling(n.conv2, kernel_size=2, stride=2, pool=P.Pooling.MAX) n.conv3 = L.Convolution(n.pool2, kernel_size=4, num_output=48, weight_filler=dict(type='xavier')) n.pool3 = L.Pooling(n.conv3, kernel_size=2, stride=2, pool=P.Pooling.MAX) n.conv4 = L.Convolution(n.pool3, kernel_size=2, num_output=48, weight_filler=dict(type='xavier')) n.pool4 = L.Pooling(n.conv4, kernel_size=2, stride=2, pool=P.Pooling.MAX) n.fc1 = L.InnerProduct(n.pool4, num_output=50, weight_filler=dict(type='xavier')) # do you "drop" i deploy as well? up to you to decide... n.drop1 = L.Dropout(n.fc1, dropout_param=dict(dropout_ratio=0.5)) n.score = L.InnerProduct(n.drop1, num_output=2, weight_filler=dict(type='xavier')) if lmdb is None: n.prob = L.Softmax(n.score) else: # keep this loss layer for all networks apart from "Deploy" n.loss = L.SoftmaxWithLoss(n.score, n.label) return n.to_proto()
现在调用函数:
with open('net_deploy.prototxt', 'w') as f: f.write(str(custom_net(None, None)))
正如你可以看到有两处修改到prototxt(条件上
lmdb
是None
):
第一个,而不是"Data"
一层,你必须声明"Input"
层只声明"data"
,不"label"
。
第二个变化是输出层:您有一个预测层(而不是损失层)(例如,参见此答案)。