Plotly Choropleth贴图的下拉菜单

发布于 2021-01-29 14:10:09

我正在尝试创建Choropleth贴图。下面是一个有效的示例:

df = px.data.gapminder().query("year==2007")

fig = go.Figure(data=go.Choropleth(
    locations=happy['iso'], # Spatial coordinates
    z = happy['Happiness'].astype(float), # Data to be color-coded
    colorbar_title = "Happiness Score",
))

fig.update_layout(
    title_text = 'Life Expectancy in 2007'
)

fig.show()

但是,我想创建一个下拉菜单,该菜单将更改不同变量(例如,预期寿命,GDP,人口)之间的绘制值。我相信这是可能的,但尚未在线上看到任何教程。他们中的大多数只使用其他类型的条形图或散点图。

到目前为止,这是我得到的:

# Initialize figure
fig = go.Figure()

# Add Traces
fig.add_trace(go.Figure(data=go.Choropleth(
    locations=df['iso_alpha'], # Spatial coordinates
    z = df['lifeExp'].astype(float), # Data to be color-coded
    colorbar_title = "Life Expectancy")))

fig.add_trace(go.Figure(data=go.Choropleth(
    locations=df['iso_alpha'], # Spatial coordinates
    z = df['gdpPercap'].astype(float), # Data to be color-coded
    colorbar_title = "GDP per capita")))

但是我不确定如何从这里继续。我是否需要通过fig.update_layout或其他方式更新图形的布局?

关注者
0
被浏览
181
1 个回答
  • 面试哥
    面试哥 2021-01-29
    为面试而生,有面试问题,就找面试哥。

    有两种解决方法

    短跑

    # save this as app.py
    import pandas as pd
    import plotly.graph_objs as go
    import plotly.express as px
    import dash
    import dash_core_components as dcc
    import dash_html_components as html
    
    # Data
    df = px.data.gapminder().query("year==2007")
    
    df = df.rename(columns=dict(pop="Population",
                                gdpPercap="GDP per Capita",
                                lifeExp="Life Expectancy"))
    
    cols_dd = ["Population", "GDP per Capita", "Life Expectancy"]
    
    app = dash.Dash()
    app.layout = html.Div([
        dcc.Dropdown(
            id='demo-dropdown',
            options=[{'label': k, 'value': k} for k in cols_dd],
            value=cols_dd[0]
        ),
    
        html.Hr(),
        dcc.Graph(id='display-selected-values'),
    
    ])
    
    @app.callback(
        dash.dependencies.Output('display-selected-values', 'figure'),
        [dash.dependencies.Input('demo-dropdown', 'value')])
    def update_output(value):
        fig = go.Figure()
        fig.add_trace(go.Choropleth(
           locations=df['iso_alpha'], # Spatial coordinates
            z=df[value].astype(float), # Data to be color-coded
            colorbar_title=value))
        fig.update_layout(title=f"<b>{value}</b>", title_x=0.5)
        return fig
    
    if __name__ == '__main__':
        app.run_server()
    

    运行它python app.py并转到http://127.0.0.1:8050

    密谋

    在这种情况下,我们需要处理不同迹线的可见性,并以显示一条迹线并隐藏所有其他迹线的方式创建按钮。

    import pandas as pd
    import numpy as np
    import plotly.graph_objs as go
    import plotly.express as px
    
    # Data
    df = px.data.gapminder().query("year==2007")
    df = df.rename(columns=dict(pop="Population",
                                gdpPercap="GDP per Capita",
                                lifeExp="Life Expectancy"))
    cols_dd = ["Population", "GDP per Capita", "Life Expectancy"]
    # we need to add this to select which trace 
    # is going to be visible
    visible = np.array(cols_dd)
    
    # define traces and buttons at once
    traces = []
    buttons = []
    for value in cols_dd:
        traces.append(go.Choropleth(
           locations=df['iso_alpha'], # Spatial coordinates
            z=df[value].astype(float), # Data to be color-coded
            colorbar_title=value,
            visible= True if value==cols_dd[0] else False))
    
        buttons.append(dict(label=value,
                            method="update",
                            args=[{"visible":list(visible==value)},
                                  {"title":f"<b>{value}</b>"}]))
    
    updatemenus = [{"active":0,
                    "buttons":buttons,
                   }]
    
    
    # Show figure
    fig = go.Figure(data=traces,
                    layout=dict(updatemenus=updatemenus))
    # This is in order to get the first title displayed correctly
    first_title = cols_dd[0]
    fig.update_layout(title=f"<b>{first_title}</b>",title_x=0.5)
    fig.show()
    


知识点
面圈网VIP题库

面圈网VIP题库全新上线,海量真题题库资源。 90大类考试,超10万份考试真题开放下载啦

去下载看看