Python-Tensorflow:如何保存/恢复模型?

发布于 2021-02-02 23:23:11

Tensorflow中训练模型后:

你如何保存经过训练的模型?
以后如何恢复此保存的模型?

关注者
0
被浏览
114
1 个回答
  • 面试哥
    面试哥 2021-02-02
    为面试而生,有面试问题,就找面试哥。

    从文档:

    保存

    # Create some variables.
    v1 = tf.get_variable("v1", shape=[3], initializer = tf.zeros_initializer)
    v2 = tf.get_variable("v2", shape=[5], initializer = tf.zeros_initializer)
    
    inc_v1 = v1.assign(v1+1)
    dec_v2 = v2.assign(v2-1)
    
    # Add an op to initialize the variables.
    init_op = tf.global_variables_initializer()
    
    # Add ops to save and restore all the variables.
    saver = tf.train.Saver()
    
    # Later, launch the model, initialize the variables, do some work, and save the
    # variables to disk.
    with tf.Session() as sess:
      sess.run(init_op)
      # Do some work with the model.
      inc_v1.op.run()
      dec_v2.op.run()
      # Save the variables to disk.
      save_path = saver.save(sess, "/tmp/model.ckpt")
      print("Model saved in path: %s" % save_path)
    恢复
    tf.reset_default_graph()
    
    # Create some variables.
    v1 = tf.get_variable("v1", shape=[3])
    v2 = tf.get_variable("v2", shape=[5])
    
    # Add ops to save and restore all the variables.
    saver = tf.train.Saver()
    
    # Later, launch the model, use the saver to restore variables from disk, and
    # do some work with the model.
    with tf.Session() as sess:
      # Restore variables from disk.
      saver.restore(sess, "/tmp/model.ckpt")
      print("Model restored.")
      # Check the values of the variables
      print("v1 : %s" % v1.eval())
      print("v2 : %s" % v2.eval())
    Tensorflow 2
    

    这仍然是测试版,因此我建议不要使用。如果你仍然想走那条路,这里是tf.saved_model使用指南

    Tensorflow <2

    simple_save

    为了完整起见,我给出了很多好答案,我将加2美分:simple_save。也是使用tf.data.DatasetAPI 的独立代码示例。

    Python 3; Tensorflow 1.14
    
    import tensorflow as tf
    from tensorflow.saved_model import tag_constants
    
    with tf.Graph().as_default():
        with tf.Session() as sess:
            ...
    
            # Saving
            inputs = {
                "batch_size_placeholder": batch_size_placeholder,
                "features_placeholder": features_placeholder,
                "labels_placeholder": labels_placeholder,
            }
            outputs = {"prediction": model_output}
            tf.saved_model.simple_save(
                sess, 'path/to/your/location/', inputs, outputs
            )
    

    恢复:

    graph = tf.Graph()
    with restored_graph.as_default():
        with tf.Session() as sess:
            tf.saved_model.loader.load(
                sess,
                [tag_constants.SERVING],
                'path/to/your/location/',
            )
            batch_size_placeholder = graph.get_tensor_by_name('batch_size_placeholder:0')
            features_placeholder = graph.get_tensor_by_name('features_placeholder:0')
            labels_placeholder = graph.get_tensor_by_name('labels_placeholder:0')
            prediction = restored_graph.get_tensor_by_name('dense/BiasAdd:0')
    
            sess.run(prediction, feed_dict={
                batch_size_placeholder: some_value,
                features_placeholder: some_other_value,
                labels_placeholder: another_value
            })
    

    独立示例

    为了演示,以下代码生成随机数据。

    1. 我们首先创建占位符。它们将在运行时保存数据。根据它们,我们创建Dataset,然后创建Iterator。我们得到迭代器的生成张量,称为input_tensor,它将用作模型的输入。
    2. 该模型本身是input_tensor基于:基于GRU的双向RNN,然后是密集分类器。因为为什么不。
    3. 损耗为softmax_cross_entropy_with_logits,优化为Adam。经过2个时期(每个批次2个批次)后,我们使用保存了“训练”模型tf.saved_model.simple_save。如果按原样运行代码,则模型将保存在simple/当前工作目录下的文件夹中。
    4. 在新图形中,然后使用还原保存的模型tf.saved_model.loader.load。我们使用捕获占位符并登录,graph.get_tensor_by_name并使用进行Iterator初始化操作graph.get_operation_by_name
    5. 最后,我们对数据集中的两个批次进行推断,并检查保存和恢复的模型是否产生相同的值。他们是这样!
      代码:
    import os
    import shutil
    import numpy as np
    import tensorflow as tf
    from tensorflow.python.saved_model import tag_constants
    
    
    def model(graph, input_tensor):
        """Create the model which consists of
        a bidirectional rnn (GRU(10)) followed by a dense classifier
    
        Args:
            graph (tf.Graph): Tensors' graph
            input_tensor (tf.Tensor): Tensor fed as input to the model
    
        Returns:
            tf.Tensor: the model's output layer Tensor
        """
        cell = tf.nn.rnn_cell.GRUCell(10)
        with graph.as_default():
            ((fw_outputs, bw_outputs), (fw_state, bw_state)) = tf.nn.bidirectional_dynamic_rnn(
                cell_fw=cell,
                cell_bw=cell,
                inputs=input_tensor,
                sequence_length=[10] * 32,
                dtype=tf.float32,
                swap_memory=True,
                scope=None)
            outputs = tf.concat((fw_outputs, bw_outputs), 2)
            mean = tf.reduce_mean(outputs, axis=1)
            dense = tf.layers.dense(mean, 5, activation=None)
    
            return dense
    
    
    def get_opt_op(graph, logits, labels_tensor):
        """Create optimization operation from model's logits and labels
    
        Args:
            graph (tf.Graph): Tensors' graph
            logits (tf.Tensor): The model's output without activation
            labels_tensor (tf.Tensor): Target labels
    
        Returns:
            tf.Operation: the operation performing a stem of Adam optimizer
        """
        with graph.as_default():
            with tf.variable_scope('loss'):
                loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
                        logits=logits, labels=labels_tensor, name='xent'),
                        name="mean-xent"
                        )
            with tf.variable_scope('optimizer'):
                opt_op = tf.train.AdamOptimizer(1e-2).minimize(loss)
            return opt_op
    
    
    if __name__ == '__main__':
        # Set random seed for reproducibility
        # and create synthetic data
        np.random.seed(0)
        features = np.random.randn(64, 10, 30)
        labels = np.eye(5)[np.random.randint(0, 5, (64,))]
    
        graph1 = tf.Graph()
        with graph1.as_default():
            # Random seed for reproducibility
            tf.set_random_seed(0)
            # Placeholders
            batch_size_ph = tf.placeholder(tf.int64, name='batch_size_ph')
            features_data_ph = tf.placeholder(tf.float32, [None, None, 30], 'features_data_ph')
            labels_data_ph = tf.placeholder(tf.int32, [None, 5], 'labels_data_ph')
            # Dataset
            dataset = tf.data.Dataset.from_tensor_slices((features_data_ph, labels_data_ph))
            dataset = dataset.batch(batch_size_ph)
            iterator = tf.data.Iterator.from_structure(dataset.output_types, dataset.output_shapes)
            dataset_init_op = iterator.make_initializer(dataset, name='dataset_init')
            input_tensor, labels_tensor = iterator.get_next()
    
            # Model
            logits = model(graph1, input_tensor)
            # Optimization
            opt_op = get_opt_op(graph1, logits, labels_tensor)
    
            with tf.Session(graph=graph1) as sess:
                # Initialize variables
                tf.global_variables_initializer().run(session=sess)
                for epoch in range(3):
                    batch = 0
                    # Initialize dataset (could feed epochs in Dataset.repeat(epochs))
                    sess.run(
                        dataset_init_op,
                        feed_dict={
                            features_data_ph: features,
                            labels_data_ph: labels,
                            batch_size_ph: 32
                        })
                    values = []
                    while True:
                        try:
                            if epoch < 2:
                                # Training
                                _, value = sess.run([opt_op, logits])
                                print('Epoch {}, batch {} | Sample value: {}'.format(epoch, batch, value[0]))
                                batch += 1
                            else:
                                # Final inference
                                values.append(sess.run(logits))
                                print('Epoch {}, batch {} | Final inference | Sample value: {}'.format(epoch, batch, values[-1][0]))
                                batch += 1
                        except tf.errors.OutOfRangeError:
                            break
                # Save model state
                print('\nSaving...')
                cwd = os.getcwd()
                path = os.path.join(cwd, 'simple')
                shutil.rmtree(path, ignore_errors=True)
                inputs_dict = {
                    "batch_size_ph": batch_size_ph,
                    "features_data_ph": features_data_ph,
                    "labels_data_ph": labels_data_ph
                }
                outputs_dict = {
                    "logits": logits
                }
                tf.saved_model.simple_save(
                    sess, path, inputs_dict, outputs_dict
                )
                print('Ok')
        # Restoring
        graph2 = tf.Graph()
        with graph2.as_default():
            with tf.Session(graph=graph2) as sess:
                # Restore saved values
                print('\nRestoring...')
                tf.saved_model.loader.load(
                    sess,
                    [tag_constants.SERVING],
                    path
                )
                print('Ok')
                # Get restored placeholders
                labels_data_ph = graph2.get_tensor_by_name('labels_data_ph:0')
                features_data_ph = graph2.get_tensor_by_name('features_data_ph:0')
                batch_size_ph = graph2.get_tensor_by_name('batch_size_ph:0')
                # Get restored model output
                restored_logits = graph2.get_tensor_by_name('dense/BiasAdd:0')
                # Get dataset initializing operation
                dataset_init_op = graph2.get_operation_by_name('dataset_init')
    
                # Initialize restored dataset
                sess.run(
                    dataset_init_op,
                    feed_dict={
                        features_data_ph: features,
                        labels_data_ph: labels,
                        batch_size_ph: 32
                    }
    
                )
                # Compute inference for both batches in dataset
                restored_values = []
                for i in range(2):
                    restored_values.append(sess.run(restored_logits))
                    print('Restored values: ', restored_values[i][0])
    
        # Check if original inference and restored inference are equal
        valid = all((v == rv).all() for v, rv in zip(values, restored_values))
        print('\nInferences match: ', valid)
    

    这将打印:

    $ python3 save_and_restore.py
    
    Epoch 0, batch 0 | Sample value: [-0.13851789 -0.3087595   0.12804556  0.20013677 -0.08229901]
    Epoch 0, batch 1 | Sample value: [-0.00555491 -0.04339041 -0.05111827 -0.2480045  -0.00107776]
    Epoch 1, batch 0 | Sample value: [-0.19321944 -0.2104792  -0.00602257  0.07465433  0.11674127]
    Epoch 1, batch 1 | Sample value: [-0.05275984  0.05981954 -0.15913513 -0.3244143   0.10673307]
    Epoch 2, batch 0 | Final inference | Sample value: [-0.26331693 -0.13013336 -0.12553    -0.04276478  0.2933622 ]
    Epoch 2, batch 1 | Final inference | Sample value: [-0.07730117  0.11119192 -0.20817074 -0.35660955  0.16990358]
    
    Saving...
    INFO:tensorflow:Assets added to graph.
    INFO:tensorflow:No assets to write.
    INFO:tensorflow:SavedModel written to: b'/some/path/simple/saved_model.pb'
    Ok
    
    Restoring...
    INFO:tensorflow:Restoring parameters from b'/some/path/simple/variables/variables'
    Ok
    Restored values:  [-0.26331693 -0.13013336 -0.12553    -0.04276478  0.2933622 ]
    Restored values:  [-0.07730117  0.11119192 -0.20817074 -0.35660955  0.16990358]
    
    Inferences match:  True
    


知识点
面圈网VIP题库

面圈网VIP题库全新上线,海量真题题库资源。 90大类考试,超10万份考试真题开放下载啦

去下载看看