用python pandas装箱列

发布于 2021-02-02 23:19:06

我有一个带有数值的数据框列:

df['percentage'].head()
46.5
44.2
100.0
42.12

我想查看该列作为箱数:

bins = [0, 1, 5, 10, 25, 50, 100]

我如何将结果作为垃圾箱value counts?

[0, 1] bin amount
[1, 5] etc 
[5, 10] etc 
......
关注者
0
被浏览
74
1 个回答
  • 面试哥
    面试哥 2021-02-02
    为面试而生,有面试问题,就找面试哥。

    你可以使用pandas.cut

    bins = [0, 1, 5, 10, 25, 50, 100]
    df['binned'] = pd.cut(df['percentage'], bins)
    print (df)
       percentage     binned
    0       46.50   (25, 50]
    1       44.20   (25, 50]
    2      100.00  (50, 100]
    3       42.12   (25, 50]
    bins = [0, 1, 5, 10, 25, 50, 100]
    labels = [1,2,3,4,5,6]
    df['binned'] = pd.cut(df['percentage'], bins=bins, labels=labels)
    print (df)
       percentage binned
    0       46.50      5
    1       44.20      5
    2      100.00      6
    3       42.12      5
    

    或numpy.searchsorted:

    bins = [0, 1, 5, 10, 25, 50, 100]
    df['binned'] = np.searchsorted(bins, df['percentage'].values)
    print (df)
       percentage  binned
    0       46.50       5
    1       44.20       5
    2      100.00       6
    3       42.12       5
    
    

    …然后value_countsor groupby和合计size:

    s = pd.cut(df['percentage'], bins=bins).value_counts()
    print (s)
    (25, 50]     3
    (50, 100]    1
    (10, 25]     0
    (5, 10]      0
    (1, 5]       0
    (0, 1]       0
    Name: percentage, dtype: int64
    
    s = df.groupby(pd.cut(df['percentage'], bins=bins)).size()
    print (s)
    percentage
    (0, 1]       0
    (1, 5]       0
    (5, 10]      0
    (10, 25]     0
    (25, 50]     3
    (50, 100]    1
    dtype: int64
    

    默认cut返回categorical

    Series像这样的方法Series.value_counts()将使用所有类别,即使数据中不存在某些类别,也可以使用categorical操作。



知识点
面圈网VIP题库

面圈网VIP题库全新上线,海量真题题库资源。 90大类考试,超10万份考试真题开放下载啦

去下载看看