Python-使用NLTK创建新的语料库

发布于 2021-02-02 23:13:51

我认为标题的答案通常是去阅读文档,但是我浏览了NLTK书,但没有给出答案。我是Python的新手。

我有很多.txt文件,我希望能够使用NLTK为语料库提供的语料库功能nltk_data

我已经尝试过,PlaintextCorpusReader但是我无法超越:

>>>import nltk
>>>from nltk.corpus import PlaintextCorpusReader
>>>corpus_root = './'
>>>newcorpus = PlaintextCorpusReader(corpus_root, '.*')
>>>newcorpus.words()

如何newcorpus使用punkt分割句子?我尝试使用punkt函数,但punkt函数无法读取PlaintextCorpusReader类?

你还可以引导我介绍如何将分段数据写入文本文件吗?

关注者
0
被浏览
84
1 个回答
  • 面试哥
    面试哥 2021-02-02
    为面试而生,有面试问题,就找面试哥。

    我认为PlaintextCorpusReader,至少在你的输入语言是英语的情况下,已经使用punkt标记器对输入进行了细分。

    PlainTextCorpusReader的构造函数

    def __init__(self, root, fileids,
                 word_tokenizer=WordPunctTokenizer(),
                 sent_tokenizer=nltk.data.LazyLoader(
                     'tokenizers/punkt/english.pickle'),
                 para_block_reader=read_blankline_block,
                 encoding='utf8'):
    

    你可以向读者传递一个单词和句子标记器,但是后者的默认值已经是nltk.data.LazyLoader('tokenizers/punkt/english.pickle')

    对于单个字符串,将按以下方式使用标记器(此处说明,有关punkt标记器,请参见第5节)。

    >>> import nltk.data
    >>> text = """
    ... Punkt knows that the periods in Mr. Smith and Johann S. Bach
    ... do not mark sentence boundaries.  And sometimes sentences
    ... can start with non-capitalized words.  i is a good variable
    ... name.
    ... """
    >>> tokenizer = nltk.data.load('tokenizers/punkt/english.pickle')
    >>> tokenizer.tokenize(text.strip())
    


  • 面试哥
    面试哥 2021-02-02
    为面试而生,有面试问题,就找面试哥。

    如果你的目录如下所示:

    newcorpus/
             file1.txt
             file2.txt
             ...
    

    只需使用以下代码行,你就可以得到一个语料库:

    import os
    from nltk.corpus.reader.plaintext import PlaintextCorpusReader
    
    corpusdir = 'newcorpus/' # Directory of corpus.
    
    newcorpus = PlaintextCorpusReader(corpusdir, '.*')
    

    注意:该PlaintextCorpusReader将会使用默认设置,nltk.tokenize.sent_tokenize()并将nltk.tokenize.word_tokenize()你的文本分为句子和单词,并且这些功能是针对英语构建的,可能不适用于所有语言。

    这是创建测试文本文件的完整代码,以及如何使用NLTK创建语料库以及如何在不同级别访问语料库:

    import os
    from nltk.corpus.reader.plaintext import PlaintextCorpusReader
    
    # Let's create a corpus with 2 texts in different textfile.
    txt1 = """This is a foo bar sentence.\nAnd this is the first txtfile in the corpus."""
    txt2 = """Are you a foo bar? Yes I am. Possibly, everyone is.\n"""
    corpus = [txt1,txt2]
    
    # Make new dir for the corpus.
    corpusdir = 'newcorpus/'
    if not os.path.isdir(corpusdir):
        os.mkdir(corpusdir)
    
    # Output the files into the directory.
    filename = 0
    for text in corpus:
        filename+=1
        with open(corpusdir+str(filename)+'.txt','w') as fout:
            print>>fout, text
    
    # Check that our corpus do exist and the files are correct.
    assert os.path.isdir(corpusdir)
    for infile, text in zip(sorted(os.listdir(corpusdir)),corpus):
        assert open(corpusdir+infile,'r').read().strip() == text.strip()
    
    
    # Create a new corpus by specifying the parameters
    # (1) directory of the new corpus
    # (2) the fileids of the corpus
    # NOTE: in this case the fileids are simply the filenames.
    newcorpus = PlaintextCorpusReader('newcorpus/', '.*')
    
    # Access each file in the corpus.
    for infile in sorted(newcorpus.fileids()):
        print infile # The fileids of each file.
        with newcorpus.open(infile) as fin: # Opens the file.
            print fin.read().strip() # Prints the content of the file
    print
    
    # Access the plaintext; outputs pure string/basestring.
    print newcorpus.raw().strip()
    print 
    
    # Access paragraphs in the corpus. (list of list of list of strings)
    # NOTE: NLTK automatically calls nltk.tokenize.sent_tokenize and 
    #       nltk.tokenize.word_tokenize.
    #
    # Each element in the outermost list is a paragraph, and
    # Each paragraph contains sentence(s), and
    # Each sentence contains token(s)
    print newcorpus.paras()
    print
    
    # To access pargraphs of a specific fileid.
    print newcorpus.paras(newcorpus.fileids()[0])
    
    # Access sentences in the corpus. (list of list of strings)
    # NOTE: That the texts are flattened into sentences that contains tokens.
    print newcorpus.sents()
    print
    
    # To access sentences of a specific fileid.
    print newcorpus.sents(newcorpus.fileids()[0])
    
    # Access just tokens/words in the corpus. (list of strings)
    print newcorpus.words()
    
    # To access tokens of a specific fileid.
    print newcorpus.words(newcorpus.fileids()[0])
    

    最后,要阅读文本目录并创建其他语言的NLTK语料库,你必须首先确保你拥有一个python-callable单词标记化和句子标记化模块,这些模块接受字符串/基字符串输入并产生以下输出:

    >>> from nltk.tokenize import sent_tokenize, word_tokenize
    >>> txt1 = """This is a foo bar sentence.\nAnd this is the first txtfile in the corpus."""
    >>> sent_tokenize(txt1)
    ['This is a foo bar sentence.', 'And this is the first txtfile in the corpus.']
    >>> word_tokenize(sent_tokenize(txt1)[0])
    ['This', 'is', 'a', 'foo', 'bar', 'sentence', '.']
    


知识点
面圈网VIP题库

面圈网VIP题库全新上线,海量真题题库资源。 90大类考试,超10万份考试真题开放下载啦

去下载看看