用mapreduce怎么处理数据倾斜问题?
-
解答:
数据倾斜:map /reduce程序执行时,reduce节点大部分执行完毕,但是有一个或者几个reduce节点运行很慢,导致整个程序的处理时间很长,这是因为某一个key的条数比其他key多很多(有时是百倍或者千倍之多),这条key所在的reduce节点所处理的数据量比其他节点就大很多,从而导致某几个节点迟迟运行不完,此称之为数据倾斜。
用hadoop程序进行数据关联时,常碰到数据倾斜的情况,这里提供一种解决方法。
自己实现partition类,用key和value相加取hash值:
方式1:
源代码:
public int getPartition(K key, V value,int numReduceTasks) { return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks; }
修改后
public int getPartition(K key, V value,int numReduceTasks) { return (((key).hashCode()+value.hashCode()) & Integer.MAX_VALUE) % numReduceTasks; }
方式2:
public class HashPartitioner<K, V> extends Partitioner<K, V> { private int aa= 0; /** Use {@link Object#hashCode()} to partition. */ public int getPartition(K key, V value, int numReduceTasks) { return (key.hashCode()+(aa++) & Integer.MAX_VALUE) % numReduceTasks; }