请简述mapreduce中,combiner,partition作用?
-
在MapReduce整个过程中,combiner是可有可无的,需要是自己的情况而定,如果只是单纯的对map输出的key-value进行一个统计,则不需要进行combiner,combiner相当于提前做了一个reduce的工作,减轻了reduce端的压力,
Combiner只应该适用于那种Reduce的输入(key:value与输出(key:value)类型完全一致,且不影响最终结果的场景。比如累加,最大值等,也可以用于过滤数据,在 map端将无效的数据过滤掉。
在这些需求场景下,输出的数据是可以根据key值来作合并的,合并的目的是减少输出的数据量,减少IO的读写,减少网络传输,以提高MR的作业效率。
1.combiner的作用就是在map端对输出先做一次合并,以减少传输到reducer的数据量.
2.combiner最基本是实现本地key的归并,具有类似本地reduce,那么所有的结果都是reduce完成,效率会相对降低。
3.使用combiner,先完成的map会在本地聚合,提升速度.
--partition意思为分开,分区。它分割map每个节点的结果,按照key分别映射给不同的reduce,也是可以自定义的。其实可以理解归类。也可以理解为根据key或value及reduce的数量来决定当前的这对输出数据最终应该交由哪个reduce task处理
partition的作用就是把这些数据归类。每个map任务会针对输出进行分区,及对每一个reduce任务建立一个分区。划分分区由用户定义的partition函数控制,默认使用哈希函数来划分分区。 HashPartitioner是mapreduce的默认partitioner。计算方法是
which reducer=(key.hashCode() & Integer.MAX_VALUE) % numReduceTasks,得到当前的目的reducer。