网易2017内推笔试编程题合集(二)

时长:180分钟 总分:100分

176浏览 0人已完成答题

题型介绍
题型 填空题
数量 10
1.
混合颜料
问题详情

你就是一个画家!你现在想绘制一幅画,但是你现在没有足够颜色的颜料。为了让问题简单,我们用正整数表示不同颜色的颜料。你知道这幅画需要的n种颜色的颜料,你现在可以去商店购买一些颜料,但是商店不能保证能供应所有颜色的颜料,所以你需要自己混合一些颜料。混合两种不一样的颜色A和颜色B颜料可以产生(A XOR B)这种颜色的颜料(新产生的颜料也可以用作继续混合产生新的颜色,XOR表示异或操作)。本着勤俭节约的精神,你想购买更少的颜料就满足要求,所以兼职程序员的你需要编程来计算出最少需要购买几种颜色的颜料?
2.
幸运的袋子
问题详情

一个袋子里面有n个球,每个球上面都有一个号码(拥有相同号码的球是无区别的)。如果一个袋子是幸运的当且仅当所有球的号码的和大于所有球的号码的积。
例如:如果袋子里面的球的号码是{1, 1, 2, 3},这个袋子就是幸运的,因为1 + 1 + 2 + 3 > 1 * 1 * 2 * 3
你可以适当从袋子里移除一些球(可以移除0个,但是别移除完),要使移除后的袋子是幸运的。现在让你编程计算一下你可以获得的多少种不同的幸运的袋子。
3.
不要二
问题详情

二货小易有一个W*H的网格盒子,网格的行编号为0~H-1,网格的列编号为0~W-1。每个格子至多可以放一块蛋糕,任意两块蛋糕的欧几里得距离不能等于2。
对于两个格子坐标(x1,y1),(x2,y2)的欧几里得距离为:
( (x1-x2) * (x1-x2) + (y1-y2) * (y1-y2) ) 的算术平方根
小易想知道最多可以放多少块蛋糕在网格盒子里。
4.
解救小易
问题详情

有一片1000*1000的草地,小易初始站在(1,1)(最左上角的位置)。小易在每一秒会横向或者纵向移动到相邻的草地上吃草(小易不会走出边界)。大反派超超想去捕捉可爱的小易,他手里有n个陷阱。第i个陷阱被安置在横坐标为xi ,纵坐标为yi 的位置上,小易一旦走入一个陷阱,将会被超超捕捉。你为了去解救小易,需要知道小易最少多少秒可能会走入一个陷阱,从而提前解救小易。
5.
统计回文
问题详情

“回文串”是一个正读和反读都一样的字符串,比如“level”或者“noon”等等就是回文串。花花非常喜欢这种拥有对称美的回文串,生日的时候她得到两个礼物分别是字符串A和字符串B。现在她非常好奇有没有办法将字符串B插入字符串A使产生的字符串是一个回文串。你接受花花的请求,帮助她寻找有多少种插入办法可以使新串是一个回文串。如果字符串B插入的位置不同就考虑为不一样的办法。
例如:
A = “aba”,B = “b”。这里有4种把B插入A的办法:
* 在A的第一个字母之前: "baba" 不是回文
* 在第一个字母‘a’之后: "abba" 是回文
* 在字母‘b’之后: "abba" 是回文
* 在第二个字母'a'之后 "abab" 不是回文
所以满足条件的答案为2
6.
饥饿的小易
问题详情

小易总是感觉饥饿,所以作为章鱼的小易经常出去寻找贝壳吃。最开始小易在一个初始位置x_0。对于小易所处的当前位置x,他只能通过神秘的力量移动到 4 * x + 3或者8 * x + 7。因为使用神秘力量要耗费太多体力,所以它只能使用神秘力量最多100,000次。贝壳总生长在能被1,000,000,007整除的位置(比如:位置0,位置1,000,000,007,位置2,000,000,014等)。小易需要你帮忙计算最少需要使用多少次神秘力量就能吃到贝壳。
7.
两种排序方法
问题详情

考拉有n个字符串字符串,任意两个字符串长度都是不同的。考拉最近学习到有两种字符串的排序方法: 1.根据字符串的字典序排序。例如:
"car" < "carriage" < "cats" < "doggies < "koala"
2.根据字符串的长度排序。例如:
"car" < "cats" < "koala" < "doggies" < "carriage"
考拉想知道自己的这些字符串排列顺序是否满足这两种排序方法,考拉要忙着吃树叶,所以需要你来帮忙验证。
8.
小易喜欢的单词
问题详情

小易喜欢的单词具有以下特性:
1.单词每个字母都是大写字母
2.单词没有连续相等的字母
3.单词没有形如“xyxy”(这里的x,y指的都是字母,并且可以相同)这样的子序列,子序列可能不连续。
例如:
小易不喜欢"ABBA",因为这里有两个连续的'B'
小易不喜欢"THETXH",因为这里包含子序列"THTH"
小易不喜欢"ABACADA",因为这里包含子序列"AAAA"
小易喜欢"A","ABA"和"ABCBA"这些单词
给你一个单词,你要回答小易是否会喜欢这个单词(只要不是不喜欢,就是喜欢)。
9.
Fibonacci数列
问题详情

Fibonacci数列是这样定义的:
F[0] = 0
F[1] = 1
for each i ≥ 2: F[i] = F[i-1] + F[i-2]
因此,Fibonacci数列就形如:0, 1, 1, 2, 3, 5, 8, 13, ...,在Fibonacci数列中的数我们称为Fibonacci数。给你一个N,你想让其变为一个Fibonacci数,每一步你可以把当前数字X变为X-1或者X+1,现在给你一个数N求最少需要多少步可以变为Fibonacci数。
10.
数字游戏
问题详情

小易邀请你玩一个数字游戏,小易给你一系列的整数。你们俩使用这些整数玩游戏。每次小易会任意说一个数字出来,然后你需要从这一系列数字中选取一部分出来让它们的和等于小易所说的数字。 例如: 如果{2,1,2,7}是你有的一系列数,小易说的数字是11.你可以得到方案2+2+7 = 11.如果顽皮的小易想坑你,他说的数字是6,那么你没有办法拼凑出和为6 现在小易给你n个数,让你找出无法从n个数中选取部分求和的数字中的最小数(从1开始)。