假设 n 个站点由 m 个轨道连接。这些站的名称从 1 到 n。轨道是双向的,我们必须从 station src 到达 station dest。第 i 条铁路的源站和目的地站在数组“roads”中给出,其中 road[i] 的格式为 {station1, station2}。从第 j 个车站出发,一列火车以时间 kj 的倍数开往与该车站相连的所有车站,每辆火车需要 tj 时间到达目的地。这些值在数组“departure”中给出,其中每个元素的格式为 {tj, kj}。现在,我们必须计算出从 src 到 dest 所需的最短时间。我们可以换多辆火车,换车所需的时间可以忽略不计。
所以,如果输入像 n = 4,m = 3,src = 1,dst = 4,roads = {{1, 2}, {2, 4}, {3, 4}},department = {{2 , 1}, {3, 5}, {7, 6}},则输出为 8。
从第 1 站,我们在 0 时间乘火车到 2 站。到达第 2 站的时间是 2。从第 2 站,我们在第 5 时间乘火车到第 4 站。到达第 2 站的时间是 3。所以总共所用时间为 (5 + 3) = 8。
脚步
为了解决这个问题,我们将遵循以下步骤 -
src := src - 1 dst := dst - 1 Define a new array graph[n] that contains tuples for initialize i := 0, when i < m, update (increase i by 1), do: a := first value of roads[i] - 1 b := second value of roads[i] - 1 t := first value of departure[i] k := second value of departure[i] add tuple (b, t, k) at the end of graph[a] add tuple (a, t, k) at the end of graph[b] Define an array dp of size n initialized with value -9999 Define a priority queue priq that contains pairs dp[src] := 0 insert pair(-dp[src], src) at the end of priq while not priq is empty, do: tuple containing (w, a) := largest value of priq delete top element from priq if a is same as dst, then: return -w if w < dp[a], then: Ignore following part, skip to the next iteration for each v in graph[a], do: create a tuple containing (b, t, k) weight := (w - k + 1) / k * k - t if weight > dp[b], then: dp[b] := weight insert pair(weight, b) at the end of priq return -1
示例
让我们看看以下实现以更好地理解 -
#include <bits/stdc++.h> using namespace std; int solve(int n, int m, int src, int dst, vector<pair<int, int>> roads, vector<pair<int, int>> departure){ src -= 1; dst -= 1; vector<tuple<int, int, int>> graph[n]; int a, b; int t, k; for(int i = 0; i < m; i++){ a = roads[i].first - 1; b = roads[i].second - 1; t = departure[i].first; k = departure[i].second; graph[a].emplace_back(b, t, k); graph[b].emplace_back(a, t, k); } vector<int> dp(n, -9999); priority_queue<pair<int, int>> priq; dp[src] = 0; priq.push(make_pair(-dp[src], src)); int w; while(not priq.empty()){ tie(w, a) = priq.top(); priq.pop(); if(a == dst){ return -w; } if(w < dp[a]) continue; for(auto &v: graph[a]){ tie(b, t, k) = v; int weight = (w - k + 1) / k * k - t; if(weight > dp[b]){ dp[b] = weight; priq.push(make_pair(weight, b)); } } } return -1; } int main() { int n = 4, m = 3, src = 1, dst = 4; vector<pair<int, int>> roads = {{1, 2}, {2, 4}, {3, 4}}, departure = {{2, 1}, {3, 5}, {7, 6}}; cout<< solve(n, m, src, dst, roads, departure); return 0; }
输入
4, 3, 1, 4, {{1, 2}, {2, 4}, {3, 4}}, {{2, 1}, {3, 5}, {7, 6}}输出结果
8