本文内容纲要:
- 【背景】
- 【环境】
- 【系统】
- 【安装JDK】
- 【安装zookeeper】
- 【安装Hadoop】
- ==解压缩并配置环境变量==
- ==修改配置文件==
- hadoop-env.sh
- core-site.xml
- hdfs-site.xml
- mapred-site.xml
- yarn-site.xml
- masters
- slaves
- ==首次启动==
- ==日常启动==
- 【安装Flink】
- ==下载并配置环境变量==
- ==配置文件==
- ==集群启动==
- 【小插曲1】
- 【小插曲2】
- 【小插曲3】
- ==启动Web页面==
- ==提交程序==
- 【小插曲1】
- 【小插曲2】
- 【小插曲3】
- 【小插曲4】
【背景】
好几年没搞Hadoop了,最近需要用Flink,打算搞一搞Flink On Yarn。
下面这篇是几年前安装HBase的笔记,也包含了Hadoop的安装。
https://www.cnblogs.com/quchunhui/p/7411389.html
这次打算都选择最新的版本尝试能否安装成功。
【环境】
jdk:jdk-8u77-linux-x64.tar.gz
zookeeper:zookeeper-3.4.6.tar.gz
hadoop:hadoop-2.10.0.tar.gz
flink:flink-1.10.0-bin-scala_2.11.tgz
【系统】
Linux CentOS8(阿里云ECS服务器)
三个节点的Hostname分别为:
rexel-ids001
rexel-ids002
rexel-ids003
【安装JDK】
已经安装好了,这里不再重复记录。
JAVA_HOME=/home/radmin/jdk1.8.0_77
【安装zookeeper】
已经安装好了,这里不再重复记录。
ZK_HOME=/home/radmin/zookeeper-3.5.6
【安装Hadoop】
==解压缩并配置环境变量==
HADOOP_HOME=/home/radmin/hadoop-2.10.1
==修改配置文件==
相关配置文件,所有节点配置文件相同。可以在一个节点配置完之后,用ssh命令复制到其他节点。
hadoop-env.sh
core-site.xml
hdfs-site.xml
mapred-site.xml
yarn-site.xml
masters
slaves
hadoop-env.sh
export JAVA_HOME=/home/radmin/jdk1.8.0_77
core-site.xml
<configuration>
<property>
<name>hadoop.tmp.dir</name>
<value>/home/radmin/data/hadoop/tmp</value>
</property>
<property>
<name>fs.defaultFS</name>
<value>hdfs://ns</value>
</property>
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/home/radmin/data/hadoop/journal</value>
</property>
<property>
<name>ha.zookeeper.quorum</name>
<value>rexel-ids001:2181,rexel-ids002:2181,rexel-ids003:2181</value>
</property>
</configuration>
hdfs-site.xml
<configuration>
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>/home/radmin/data/hadoop/hdfs/name</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>/home/radmin/data/hadoop/hdfs/data</value>
</property>
<property>
<name>dfs.permissions</name>
<value>false</value>
</property>
<property>
<name>dfs.nameservices</name>
<value>ns</value>
</property>
<property>
<name>dfs.ha.namenodes.ns</name>
<value>nn1,nn2</value>
</property>
<property>
<name>dfs.namenode.rpc-address.ns.nn1</name>
<value>rexel-ids001:9000</value>
</property>
<property>
<name>dfs.namenode.rpc-address.ns.nn2</name>
<value>rexel-ids002:9000</value>
</property>
<property>
<name>dfs.namenode.http-address.ns.nn1</name>
<value>rexel-ids001:50070</value>
</property>
<property>
<name>dfs.namenode.http-address.ns.nn2</name>
<value>rexel-ids002:50070</value>
</property>
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://rexel-ids001:8485;rexel-ids002:8485;rexel-ids003:8485/ns</value>
</property>
<property>
<name>dfs.ha.automatic-failover.enabled.ns</name>
<value>true</value>
</property>
<property>
<name>dfs.client.failover.proxy.provider.ns</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<property>
<name>dfs.ha.fencing.methods</name>
<value>sshfence</value>
</property>
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>~/.ssh/id_rsa</value>
</property>
</configuration>
mapred-site.xml
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>mapreduce.reduce.memory.mb</name>
<value>54</value>
</property>
<property>
<name>mapreduce.map.memory.mb</name>
<value>128</value>
</property>
</configuration>
yarn-site.xml
<configuration>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>ns</value>
</property>
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>rexel-ids001</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>rexel-ids002</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm1</name>
<value>rexel-ids001:8088</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm2</name>
<value>rexel-ids002:8088</value>
</property>
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>rexel-ids001:2181,rexel-ids002:2181,rexel-ids003:2181</value>
</property>
<property>
<name>yarn.resourcemanager.recovery.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.resourcemanager.store.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>512</value>
</property>
<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>128</value>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>512</value>
</property>
<property>
<name>yarn.resourcemanager.am.max-attempts</name>
<value>4</value>
<description>The maximum number of application master execution attempts.</description>
</property>
</configuration>
其中yarn.resourcemanager.am.max-attempts这项配置是根据Flink官网上提示的修改的。
【小插曲】
后面在尝试提交一个job到集群上的时候提示了Yarn内存设置的太小,修改了以下三个配置,具体请参考后面的笔记。
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>2048</value>
</property>
<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>1024</value>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>2048</value>
</property>
masters
如果没有,则需要手动创建该文件>
rexel-ids001
rexel-ids002
slaves
rexel-ids001
rexel-ids002
rexel-ids003
==首次启动==
1)在rexel-ids001上
hdfs zkfc -formatZK
2)在3节点分别启动:
hadoop-daemon.sh start journalnode
3)在rexel-ids001上:
hdfs namenode -format
hadoop-daemon.sh start namenode
4)在rexel-ids002上:
hdfs namenode -bootstrapStandby
hadoop-daemon.sh start namenode
5)在rexel-ids001和rexel-ids002上:
hadoop-daemon.sh start zkfc
6)在3个节点分别启动:
hadoop-daemon.sh start datanode
7)在rexel-ids001和rexel-ids002上:
yarn-daemon.sh start resourcemanager
8)在3个节点分别启动:
yarn-daemon.sh start nodemanager
9)在dscn1上启动:
mr-jobhistory-daemon.sh start historyserver
==日常启动==
1)在3节点分别启动:
hadoop-daemon.sh start journalnode
2)在1和2上:
hadoop-daemon.sh start namenode
3)在1和2上:
hadoop-daemon.sh start zkfc
4)在3个节点分别启动:
hadoop-daemon.sh start datanode
5)在1和d2上:
yarn-daemon.sh start resourcemanager
6)在3个节点分别启动:
yarn-daemon.sh start nodemanager
7)在1上启动:
mr-jobhistory-daemon.sh start historyserver
【安装Flink】
==下载并配置环境变量==
==配置文件==
可以参考官网提供的example
https://ci.apache.org/projects/flink/flink-docs-release-1.10/ops/jobmanager_high_availability.html
相关配置文件:
flink-conf.yaml
masters
slaves
zoo.cfg
flink-conf.xml
################################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
#==============================================================================
# Common
#==============================================================================
# The external address of the host on which the JobManager runs and can be
# reached by the TaskManagers and any clients which want to connect. This setting
# is only used in Standalone mode and may be overwritten on the JobManager side
# by specifying the --host <hostname> parameter of the bin/jobmanager.sh executable.
# In high availability mode, if you use the bin/start-cluster.sh script and setup
# the conf/masters file, this will be taken care of automatically. Yarn/Mesos
# automatically configure the host name based on the hostname of the node where the
# JobManager runs.
jobmanager.rpc.address: rexel-ids001
# The RPC port where the JobManager is reachable.
jobmanager.rpc.port: 6123
# The heap size for the JobManager JVM
jobmanager.heap.size: 512m
# The total process memory size for the TaskManager.
#
# Note this accounts for all memory usage within the TaskManager process, including JVM metaspace and other overhead.
taskmanager.memory.process.size: 1024m
# To exclude JVM metaspace and overhead, please, use total Flink memory size instead of 'taskmanager.memory.process.size'.
# It is not recommended to set both 'taskmanager.memory.process.size' and Flink memory.
#
taskmanager.memory.flink.size: 512m
# The number of task slots that each TaskManager offers. Each slot runs one parallel pipeline.
taskmanager.numberOfTaskSlots: 4
# The parallelism used for programs that did not specify and other parallelism.
parallelism.default: 1
# The default file system scheme and authority.
#
# By default file paths without scheme are interpreted relative to the local
# root file system 'file:///'. Use this to override the default and interpret
# relative paths relative to a different file system,
# for example 'hdfs://mynamenode:12345'
#
# fs.default-scheme
#==============================================================================
# High Availability
#==============================================================================
# The high-availability mode. Possible options are 'NONE' or 'zookeeper'.
#
high-availability: zookeeper
# The path where metadata for master recovery is persisted. While ZooKeeper stores
# the small ground truth for checkpoint and leader election, this location stores
# the larger objects, like persisted dataflow graphs.
#
# Must be a durable file system that is accessible from all nodes
# (like HDFS, S3, Ceph, nfs, ...)
#
high-availability.storageDir: hdfs://ns/flink/recovery
# The list of ZooKeeper quorum peers that coordinate the high-availability
# setup. This must be a list of the form:
# "host1:clientPort,host2:clientPort,..." (default clientPort: 2181)
#
high-availability.zookeeper.quorum: rexel-ids001:2181,rexel-ids002:2181,rexel-ids003:2181
# ACL options are based on https://zookeeper.apache.org/doc/r3.1.2/zookeeperProgrammers.html#sc_BuiltinACLSchemes
# It can be either "creator" (ZOO_CREATE_ALL_ACL) or "open" (ZOO_OPEN_ACL_UNSAFE)
# The default value is "open" and it can be changed to "creator" if ZK security is enabled
#
# high-availability.zookeeper.client.acl: open
high-availability.zookeeper.path.root: /flink
#==============================================================================
# Fault tolerance and checkpointing
#==============================================================================
# The backend that will be used to store operator state checkpoints if
# checkpointing is enabled.
#
# Supported backends are 'jobmanager', 'filesystem', 'rocksdb', or the
# <class-name-of-factory>.
#
state.backend: filesystem
# Directory for checkpoints filesystem, when using any of the default bundled
# state backends.
#
state.checkpoints.dir: hdfs://ns/flink/checkpoints
# Default target directory for savepoints, optional.
#
state.savepoints.dir: hdfs://ns/flink/savepoints
# Flag to enable/disable incremental checkpoints for backends that
# support incremental checkpoints (like the RocksDB state backend).
#
# state.backend.incremental: false
# The failover strategy, i.e., how the job computation recovers from task failures.
# Only restart tasks that may have been affected by the task failure, which typically includes
# downstream tasks and potentially upstream tasks if their produced data is no longer available for consumption.
jobmanager.execution.failover-strategy: region
#==============================================================================
# Rest & web frontend
#==============================================================================
# The port to which the REST client connects to. If rest.bind-port has
# not been specified, then the server will bind to this port as well.
#
rest.port: 9081
# The address to which the REST client will connect to
#
#rest.address: 0.0.0.0
# Port range for the REST and web server to bind to.
#
rest.bind-port: 9100-9124
# The address that the REST & web server binds to
#
#rest.bind-address: 0.0.0.0
# Flag to specify whether job submission is enabled from the web-based
# runtime monitor. Uncomment to disable.
web.submit.enable: false
#==============================================================================
# Advanced
#==============================================================================
# Override the directories for temporary files. If not specified, the
# system-specific Java temporary directory (java.io.tmpdir property) is taken.
#
# For framework setups on Yarn or Mesos, Flink will automatically pick up the
# containers' temp directories without any need for configuration.
#
# Add a delimited list for multiple directories, using the system directory
# delimiter (colon ':' on unix) or a comma, e.g.:
# /data1/tmp:/data2/tmp:/data3/tmp
#
# Note: Each directory entry is read from and written to by a different I/O
# thread. You can include the same directory multiple times in order to create
# multiple I/O threads against that directory. This is for example relevant for
# high-throughput RAIDs.
#
io.tmp.dirs: /home/radmin/data/flink/tmp
env.log.dir: /home/radmin/data/flink/logs
# The classloading resolve order. Possible values are 'child-first' (Flink's default)
# and 'parent-first' (Java's default).
#
# Child first classloading allows users to use different dependency/library
# versions in their application than those in the classpath. Switching back
# to 'parent-first' may help with debugging dependency issues.
#
# classloader.resolve-order: child-first
# The amount of memory going to the network stack. These numbers usually need
# no tuning. Adjusting them may be necessary in case of an "Insufficient number
# of network buffers" error. The default min is 64MB, the default max is 1GB.
#
taskmanager.memory.network.fraction: 0.1
taskmanager.memory.network.min: 64mb
taskmanager.memory.network.max: 1gb
fs.hdfs.hadoopconf: /home/radmin/hadoop-2.10.0/etc/hadoop/
#==============================================================================
# Flink Cluster Security Configuration
#==============================================================================
# Kerberos authentication for various components - Hadoop, ZooKeeper, and connectors -
# may be enabled in four steps:
# 1. configure the local krb5.conf file
# 2. provide Kerberos credentials (either a keytab or a ticket cache w/ kinit)
# 3. make the credentials available to various JAAS login contexts
# 4. configure the connector to use JAAS/SASL
# The below configure how Kerberos credentials are provided. A keytab will be used instead of
# a ticket cache if the keytab path and principal are set.
# security.kerberos.login.use-ticket-cache: true
# security.kerberos.login.keytab: /path/to/kerberos/keytab
# security.kerberos.login.principal: flink-user
# The configuration below defines which JAAS login contexts
# security.kerberos.login.contexts: Client,KafkaClient
#==============================================================================
# ZK Security Configuration
#==============================================================================
# Below configurations are applicable if ZK ensemble is configured for security
# Override below configuration to provide custom ZK service name if configured
# zookeeper.sasl.service-name: zookeeper
# The configuration below must match one of the values set in "security.kerberos.login.contexts"
# zookeeper.sasl.login-context-name: Client
#==============================================================================
# HistoryServer
#==============================================================================
# The HistoryServer is started and stopped via bin/historyserver.sh (start|stop)
# Directory to upload completed jobs to. Add this directory to the list of
# monitored directories of the HistoryServer as well (see below).
jobmanager.archive.fs.dir: hdfs://ns/flink/completed_jobs/
# The address under which the web-based HistoryServer listens.
historyserver.web.address: 0.0.0.0
# The port under which the web-based HistoryServer listens.
historyserver.web.port: 8082
# Comma separated list of directories to monitor for completed jobs.
historyserver.archive.fs.dir: hdfs://ns/flink/completed_jobs/
# Interval in milliseconds for refreshing the monitored directories.
historyserver.archive.fs.refresh-interval: 10000
masters
rexel-ids001:8081
rexel-ids002:8081
slaves
rexel-ids001
rexel-ids002
rexel-ids003
zoo.cfg
# The number of milliseconds of each tick
tickTime=2000
# The number of ticks that the initial synchronization phase can take
initLimit=10
# The number of ticks that can pass between sending a request and getting an acknowledgement
syncLimit=5
# The directory where the snapshot is stored.
dataDir=/home/radmin/data/zk/dataDir
dataLogDir=/home/radmin/data/zk/dataLogDir
# The port at which the clients will connect
clientPort=2181
# ZooKeeper quorum peers
server.0=rexel-ids001:2888:3888
server.1=rexel-ids002:2888:3888
server.2=rexel-ids003:2888:3888
==集群启动==
启动命令:./start-cluster.sh
【小插曲1】
启动的时候,出现了如下错误
Starting HA cluster with 2 masters.
Starting standalonesession daemon on host rexel-ids001.
Starting standalonesession daemon on host rexel-ids002.
[ERROR] Could not get JVM parameters properly.
[ERROR] Could not get JVM parameters properly.
[ERROR] Could not get JVM parameters properly.
具体原因尚不清楚,不过注释掉了flink-conf.xml中以下几个配置项之后,错误不在提示。
taskmanager.memory.process.size: 1024m
taskmanager.memory.network.fraction: 0.1
taskmanager.memory.network.min: 64mb
taskmanager.memory.network.max: 1gb
【小插曲2】
在启动日志中发现如下错误:
2020-03-12 12:42:04,933 INFO org.apache.flink.configuration.GlobalConfiguration - Loading configuration property: parallelism.default, 1
2020-03-12 12:42:04,933 INFO org.apache.flink.configuration.GlobalConfiguration - Loading configuration property: jobmanager.execution.failover-strategy, region
2020-03-12 12:42:04,936 WARN org.apache.flink.client.cli.CliFrontend - Could not load CLI class org.apache.flink.yarn.cli.FlinkYarnSessionCli.
java.lang.NoClassDefFoundError: org/apache/hadoop/yarn/exceptions/YarnException
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:264)
at org.apache.flink.client.cli.CliFrontend.loadCustomCommandLine(CliFrontend.java:1076)
at org.apache.flink.client.cli.CliFrontend.loadCustomCommandLines(CliFrontend.java:1030)
at org.apache.flink.client.cli.CliFrontend.main(CliFrontend.java:957)
Caused by: java.lang.ClassNotFoundException: org.apache.hadoop.yarn.exceptions.YarnException
at java.net.URLClassLoader.findClass(URLClassLoader.java:381)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:331)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
... 5 more
2020-03-12 12:42:05,028 INFO org.apache.flink.core.fs.FileSystem - Hadoop is not in the classpath/dependencies. The extended set of supported File Systems via Hadoop is not available.
2020-03-12 12:42:05,057 INFO org.apache.flink.runtime.security.modules.HadoopModuleFactory - Cannot create Hadoop Security Module because Hadoop cannot be found in the Classpath.
2020-03-12 12:42:05,069 INFO org.apache.flink.runtime.security.modules.JaasModule - Jaas file will be created as /tmp/jaas-5195639153293838170.conf.
2020-03-12 12:42:05,071 INFO org.apache.flink.runtime.security.SecurityUtils - Cannot install HadoopSecurityContext because Hadoop cannot be found in the Classpath.
可以参考以下Flink官网的提示
https://ci.apache.org/projects/flink/flink-docs-release-1.10/ops/deployment/hadoop.html
解决办法就是在环境变量中增加
export HADOOP_CLASSPATH=`hadoop classpath`
【小插曲3】
集群启动之后,过一会jps查看flink进程,发现进程不存在了。
查看启动日志发现如下错误:
2020-03-12 14:12:07,474 ERROR org.apache.flink.runtime.taskexecutor.TaskManagerRunner - TaskManager initialization failed.
java.io.IOException: Could not create FileSystem for highly available storage path (hdfs://ns/flink/recovery/default)
at org.apache.flink.runtime.blob.BlobUtils.createFileSystemBlobStore(BlobUtils.java:103)
at org.apache.flink.runtime.blob.BlobUtils.createBlobStoreFromConfig(BlobUtils.java:89)
at org.apache.flink.runtime.highavailability.HighAvailabilityServicesUtils.createHighAvailabilityServices(HighAvailabilityServicesUtils.java:125)
at org.apache.flink.runtime.taskexecutor.TaskManagerRunner.<init>(TaskManagerRunner.java:132)
at org.apache.flink.runtime.taskexecutor.TaskManagerRunner.runTaskManager(TaskManagerRunner.java:308)
at org.apache.flink.runtime.taskexecutor.TaskManagerRunner.lambda$runTaskManagerSecurely$2(TaskManagerRunner.java:322)
at org.apache.flink.runtime.security.NoOpSecurityContext.runSecured(NoOpSecurityContext.java:30)
at org.apache.flink.runtime.taskexecutor.TaskManagerRunner.runTaskManagerSecurely(TaskManagerRunner.java:321)
at org.apache.flink.runtime.taskexecutor.TaskManagerRunner.main(TaskManagerRunner.java:287)
Caused by: org.apache.flink.core.fs.UnsupportedFileSystemSchemeException: Could not find a file system implementation for scheme 'hdfs'. The scheme is not directly supported by Flink and no Hadoop file system to support this scheme could be loaded.
at org.apache.flink.core.fs.FileSystem.getUnguardedFileSystem(FileSystem.java:450)
at org.apache.flink.core.fs.FileSystem.get(FileSystem.java:362)
at org.apache.flink.core.fs.Path.getFileSystem(Path.java:298)
at org.apache.flink.runtime.blob.BlobUtils.createFileSystemBlobStore(BlobUtils.java:100)
... 8 more
Caused by: org.apache.flink.core.fs.UnsupportedFileSystemSchemeException: Hadoop is not in the classpath/dependencies.
at org.apache.flink.core.fs.UnsupportedSchemeFactory.create(UnsupportedSchemeFactory.java:58)
at org.apache.flink.core.fs.FileSystem.getUnguardedFileSystem(FileSystem.java:446)
... 11 more
参照这个道友的博客之后。博客:https://my.oschina.net/u/2338224/blog/3101005
去下面的网站上找了相应的jar包,结果悲催的发现没有Flink1.10和hadoop2.10.0
https://repo.maven.apache.org/maven2/org/apache/flink/flink-shaded-hadoop-2-uber/
怎么办?先尝试用2.8.3-10.0试试呢?还是把hadoop切换到2.8.3版本呢?先尝试了把包放进去
重新执行./start-cluster.sh之后,还好Flink集群正常启动起来了。
可以看到这两个进程一直都在,日志中也没有了上述错误。
==启动Web页面==
Web页面的端口号是8081。
看到这个页面真是挺开心的。毕竟挺不容易的。(先去打一把部落冲突,庆祝一下。)
==提交程序==
提交官方提供的WordCount程序试试
启动命令:flink run -m yarn-cluster -yn 1 /home/radmin/package/WordCount.jar
【小插曲1】
提交命令提示错误
Could not build the program from JAR file.
查看日志中有如下错误
2020-03-12 21:08:48,148 ERROR org.apache.flink.client.cli.CliFrontend - Invalid command line arguments.
org.apache.flink.client.cli.CliArgsException: Could not build the program from JAR file.
at org.apache.flink.client.cli.CliFrontend.run(CliFrontend.java:203)
at org.apache.flink.client.cli.CliFrontend.parseParameters(CliFrontend.java:895)
at org.apache.flink.client.cli.CliFrontend.lambda$main$10(CliFrontend.java:968)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1836)
at org.apache.flink.runtime.security.HadoopSecurityContext.runSecured(HadoopSecurityContext.java:41)
at org.apache.flink.client.cli.CliFrontend.main(CliFrontend.java:968)
Caused by: java.io.FileNotFoundException: JAR file does not exist: -yn
at org.apache.flink.client.cli.CliFrontend.getJarFile(CliFrontend.java:719)
at org.apache.flink.client.cli.CliFrontend.buildProgram(CliFrontend.java:695)
at org.apache.flink.client.cli.CliFrontend.run(CliFrontend.java:200)
... 7 more
在社群里问了大牛之后,说在Flink1.10之后,取消了-yn的参数,所以才报这个错误。
【小插曲2】
删除-yn的参数之后,再次提交,又出现了以下错误
------------------------------------------------------------
The program finished with the following exception:
org.apache.flink.client.program.ProgramInvocationException: The main method caused an error: Could not deploy Yarn job cluster.
at org.apache.flink.client.program.PackagedProgram.callMainMethod(PackagedProgram.java:335)
at org.apache.flink.client.program.PackagedProgram.invokeInteractiveModeForExecution(PackagedProgram.java:205)
at org.apache.flink.client.ClientUtils.executeProgram(ClientUtils.java:138)
at org.apache.flink.client.cli.CliFrontend.executeProgram(CliFrontend.java:664)
at org.apache.flink.client.cli.CliFrontend.run(CliFrontend.java:213)
at org.apache.flink.client.cli.CliFrontend.parseParameters(CliFrontend.java:895)
at org.apache.flink.client.cli.CliFrontend.lambda$main$10(CliFrontend.java:968)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1836)
at org.apache.flink.runtime.security.HadoopSecurityContext.runSecured(HadoopSecurityContext.java:41)
at org.apache.flink.client.cli.CliFrontend.main(CliFrontend.java:968)
Caused by: org.apache.flink.client.deployment.ClusterDeploymentException: Could not deploy Yarn job cluster.
at org.apache.flink.yarn.YarnClusterDescriptor.deployJobCluster(YarnClusterDescriptor.java:397)
at org.apache.flink.client.deployment.executors.AbstractJobClusterExecutor.execute(AbstractJobClusterExecutor.java:70)
at org.apache.flink.streaming.api.environment.StreamExecutionEnvironment.executeAsync(StreamExecutionEnvironment.java:1733)
at org.apache.flink.streaming.api.environment.StreamContextEnvironment.executeAsync(StreamContextEnvironment.java:94)
at org.apache.flink.streaming.api.environment.StreamContextEnvironment.execute(StreamContextEnvironment.java:63)
at org.apache.flink.streaming.api.environment.StreamExecutionEnvironment.execute(StreamExecutionEnvironment.java:1620)
at org.apache.flink.streaming.examples.wordcount.WordCount.main(WordCount.java:96)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.flink.client.program.PackagedProgram.callMainMethod(PackagedProgram.java:321)
... 11 more
Caused by: org.apache.flink.yarn.YarnClusterDescriptor$YarnDeploymentException: The cluster does not have the requested resources for the TaskManagers available!
Maximum Memory: 512 Requested: 1024MB. Please check the 'yarn.scheduler.maximum-allocation-mb' and the 'yarn.nodemanager.resource.memory-mb' configuration values
at org.apache.flink.yarn.YarnClusterDescriptor.validateClusterResources(YarnClusterDescriptor.java:543)
at org.apache.flink.yarn.YarnClusterDescriptor.deployInternal(YarnClusterDescriptor.java:470)
at org.apache.flink.yarn.YarnClusterDescriptor.deployJobCluster(YarnClusterDescriptor.java:390)
... 22 more
参考这位法力强大的道友的博客:https://www.jianshu.com/p/52da8b2e4ccc
详细从源码角度解读了job部署到yarn上的详细过程,上述错误为检查yarn资源的时候报的错误。
调大了Yarn一下两个配置的参数之后,Job正常提交完成。
调整参数:
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>10240</value>
</property>
<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>1024</value>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>10240</value>
</property>
【小插曲3】
提交Flink任务的时候告警
2020-05-25 11:21:33,627 WARN org.apache.hadoop.ipc.Client - Failed to connect to server: rexel-ids001/172.19.131.94:8032: retries get failed due to exceeded maximum allowed retries number: 0
java.net.ConnectException: Connection refused
at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:717)
at org.apache.hadoop.net.SocketIOWithTimeout.connect(SocketIOWithTimeout.java:206)
at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:531)
at org.apache.hadoop.ipc.Client$Connection.setupConnection(Client.java:685)
at org.apache.hadoop.ipc.Client$Connection.setupIOstreams(Client.java:788)
at org.apache.hadoop.ipc.Client$Connection.access$3500(Client.java:410)
at org.apache.hadoop.ipc.Client.getConnection(Client.java:1550)
at org.apache.hadoop.ipc.Client.call(Client.java:1381)
at org.apache.hadoop.ipc.Client.call(Client.java:1345)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:227)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:116)
at com.sun.proxy.$Proxy7.getClusterNodes(Unknown Source)
at org.apache.hadoop.yarn.api.impl.pb.client.ApplicationClientProtocolPBClientImpl.getClusterNodes(ApplicationClientProtocolPBClientImpl.java:303)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:409)
at org.apache.hadoop.io.retry.RetryInvocationHandler$Call.invokeMethod(RetryInvocationHandler.java:163)
at org.apache.hadoop.io.retry.RetryInvocationHandler$Call.invoke(RetryInvocationHandler.java:155)
at org.apache.hadoop.io.retry.RetryInvocationHandler$Call.invokeOnce(RetryInvocationHandler.java:95)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:346)
at com.sun.proxy.$Proxy8.getClusterNodes(Unknown Source)
at org.apache.hadoop.yarn.client.api.impl.YarnClientImpl.getNodeReports(YarnClientImpl.java:564)
at org.apache.flink.yarn.YarnClientYarnClusterInformationRetriever.getMaxVcores(YarnClientYarnClusterInformationRetriever.java:43)
at org.apache.flink.yarn.YarnClusterDescriptor.isReadyForDeployment(YarnClusterDescriptor.java:278)
at org.apache.flink.yarn.YarnClusterDescriptor.deployInternal(YarnClusterDescriptor.java:444)
at org.apache.flink.yarn.YarnClusterDescriptor.deployJobCluster(YarnClusterDescriptor.java:390)
at org.apache.flink.client.deployment.executors.AbstractJobClusterExecutor.execute(AbstractJobClusterExecutor.java:70)
at org.apache.flink.streaming.api.environment.StreamExecutionEnvironment.executeAsync(StreamExecutionEnvironment.java:1733)
at org.apache.flink.streaming.api.environment.StreamContextEnvironment.executeAsync(StreamContextEnvironment.java:94)
at org.apache.flink.streaming.api.environment.StreamContextEnvironment.execute(StreamContextEnvironment.java:63)
at org.apache.flink.streaming.api.environment.StreamExecutionEnvironment.execute(StreamExecutionEnvironment.java:1620)
at com.rexel.stream.flink.job.RexelStream.main(RexelStream.java:167)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.flink.client.program.PackagedProgram.callMainMethod(PackagedProgram.java:321)
at org.apache.flink.client.program.PackagedProgram.invokeInteractiveModeForExecution(PackagedProgram.java:205)
at org.apache.flink.client.ClientUtils.executeProgram(ClientUtils.java:138)
at org.apache.flink.client.cli.CliFrontend.executeProgram(CliFrontend.java:664)
at org.apache.flink.client.cli.CliFrontend.run(CliFrontend.java:213)
at org.apache.flink.client.cli.CliFrontend.parseParameters(CliFrontend.java:895)
at org.apache.flink.client.cli.CliFrontend.lambda$main$10(CliFrontend.java:968)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1836)
at org.apache.flink.runtime.security.HadoopSecurityContext.runSecured(HadoopSecurityContext.java:41)
at org.apache.flink.client.cli.CliFrontend.main(CliFrontend.java:968)
原因是Yarn的resourcemanager进行了主备切换,主节点不在当前服务器上,属于正常现象。
如果觉得不爽,可以切换一下ResourceManager的主备(把另一个节点的ResourceManager干掉,就自动切换了)
【小插曲4】
在我自己的虚机上装了一个Flink集群,运行任务的时候提示了以下错误
Note: System times on machines may be out of sync. Check system time and time zones.
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at org.apache.hadoop.yarn.api.records.impl.pb.SerializedExceptionPBImpl.instantiateExceptionImpl(SerializedExceptionPBImpl.java:171)
at org.apache.hadoop.yarn.api.records.impl.pb.SerializedExceptionPBImpl.instantiateException(SerializedExceptionPBImpl.java:182)
at org.apache.hadoop.yarn.api.records.impl.pb.SerializedExceptionPBImpl.deSerialize(SerializedExceptionPBImpl.java:106)
at org.apache.hadoop.yarn.client.api.impl.NMClientImpl.startContainer(NMClientImpl.java:206)
at org.apache.hadoop.yarn.client.api.async.impl.NMClientAsyncImpl$StatefulContainer$StartContainerTransition.transition(NMClientAsyncImpl.java:450)
at org.apache.hadoop.yarn.client.api.async.impl.NMClientAsyncImpl$StatefulContainer$StartContainerTransition.transition(NMClientAsyncImpl.java:436)
at org.apache.hadoop.yarn.state.StateMachineFactory$MultipleInternalArc.doTransition(StateMachineFactory.java:385)
at org.apache.hadoop.yarn.state.StateMachineFactory.doTransition(StateMachineFactory.java:302)
at org.apache.hadoop.yarn.state.StateMachineFactory.access$300(StateMachineFactory.java:46)
at org.apache.hadoop.yarn.state.StateMachineFactory$InternalStateMachine.doTransition(StateMachineFactory.java:448)
at org.apache.hadoop.yarn.client.api.async.impl.NMClientAsyncImpl$StatefulContainer.handle(NMClientAsyncImpl.java:617)
at org.apache.hadoop.yarn.client.api.async.impl.NMClientAsyncImpl$ContainerEventProcessor.run(NMClientAsyncImpl.java:676)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
从日志中可以看出来,提示的是系统时间不同步,尝试了对虚机的3个节点安装NTP时间同步服务
具体安装步骤可以参考我以前的博客:Linux配置ntp时间服务器(全)
配置了NTP时间同步,然后重启了zookeeper、hadoop、flink集群之后,问题解决。
--END--
本文内容总结:【背景】,【环境】,【系统】,【安装JDK】,【安装zookeeper】,【安装Hadoop】,==解压缩并配置环境变量==,==修改配置文件==,hadoop-env.sh,core-site.xml,hdfs-site.xml,mapred-site.xml,yarn-site.xml,masters,slaves,==首次启动==,==日常启动==,【安装Flink】,==下载并配置环境变量==,==配置文件==,==集群启动==,【小插曲1】,【小插曲2】,【小插曲3】,==启动Web页面==,==提交程序==,【小插曲1】,【小插曲2】,【小插曲3】,【小插曲4】,
原文链接:https://www.cnblogs.com/quchunhui/p/12463455.html