python类DMatrix()的实例源码

XGBoostClassifier.py 文件源码 项目:ensemble_amazon 作者: kaz-Anova 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def predict_proba(self, X): 
    try:
      rows=(X.shape[0])
    except:
      rows=len(X)
    X1 = self.build_matrix(X)
    if  self.k_models!=None and len(self.k_models)<2:
        predictions = self.bst.predict(X1)
    else :
        dtest = xgb.DMatrix(X)
        predictions= None
        for gbdt in self.k_models:
            predsnew = gbdt.predict(dtest, ntree_limit=(gbdt.best_iteration+1)*self.num_parallel_tree)  
            if predictions==None:
                predictions=predsnew
            else:
                for g in range (0, predsnew.shape[0]):
                    predictions[g]+=predsnew[g]
        for g in range (0, len(predictions)):
            predictions[g]/=float(len(self.k_models))               
        predictions=np.array(predictions)
    if self.objective == 'multi:softprob': return predictions.reshape( rows, self.num_class)
    return np.vstack([1 - predictions, predictions]).T
xgb_rank.py 文件源码 项目:kaggle-review 作者: daxiongshu 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def fit(self,X,y,Xg,Xt=None,yt=None,Xgt=None,load_model=None,save_model=None):
        print(X.shape,y.shape)
        num_round = self.params['num_round']
        early_stopping_rounds = self.params['early_stopping_rounds']
        dtrain = xgb.DMatrix(X, y)
        dtrain.set_group(Xg)

        if Xt is not None:
            dvalid = xgb.DMatrix(Xt, yt)
            dvalid.set_group(Xgt)
            watchlist = [(dtrain, 'train'), (dvalid, 'valid')]
            bst = xgb.train(self.params, dtrain, num_round, evals = watchlist,
                early_stopping_rounds=early_stopping_rounds,verbose_eval=1,xgb_model=load_model,
                maximize=True)
        else:
            watchlist = [(dtrain, 'train')]
            bst = xgb.train(self.params, dtrain, num_round, evals = watchlist,
                verbose_eval=1,xgb_model=load_model)
        self.bst = bst
        if save_model is not None:
            bst.save_model(save_model)
two_sigma_financial_modelling.py 文件源码 项目:PortfolioTimeSeriesAnalysis 作者: MizioAnd 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def predicted_vs_actual_y_xgb(self, xgb, best_nrounds, xgb_params, x_train_split, x_test_split, y_train_split,
                                  y_test_split, title_name):
        # Split the training data into an extra set of test
        # x_train_split, x_test_split, y_train_split, y_test_split = train_test_split(x_train, y_train)
        dtrain_split = xgb.DMatrix(x_train_split, label=y_train_split)
        dtest_split = xgb.DMatrix(x_test_split)
        print(np.shape(x_train_split), np.shape(x_test_split), np.shape(y_train_split), np.shape(y_test_split))
        gbdt = xgb.train(xgb_params, dtrain_split, best_nrounds)
        y_predicted = gbdt.predict(dtest_split)
        plt.figure(figsize=(10, 5))
        plt.scatter(y_test_split, y_predicted, s=20)
        rmse_pred_vs_actual = self.rmse(y_predicted, y_test_split)
        plt.title(''.join([title_name, ', Predicted vs. Actual.', ' rmse = ', str(rmse_pred_vs_actual)]))
        plt.xlabel('Actual y')
        plt.ylabel('Predicted y')
        plt.plot([min(y_test_split), max(y_test_split)], [min(y_test_split), max(y_test_split)])
        plt.tight_layout()
infer.py 文件源码 项目:DriverPower 作者: smshuai 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def predict_with_gbm(X, y, model):
    """

    Args:
        X:
        y:
        model:

    Returns:

    """
    assert model['model_name'] == 'GBM',\
        'Wrong model name in model info: {}. Need GBM.'.format(model['model_name'])
    testData = xgb.DMatrix(data=X, label=y.nMut.values, feature_names=model['feature_names'])
    testData.set_base_margin(np.array(np.log(y.length+1/y.N) + np.log(y.N)))
    kfold = model['kfold']
    pred = np.zeros(y.shape[0])
    for k in range(1, kfold+1):
        model['model'][k].set_param(model['params'])  # Bypass a bug of dumping without max_delta_step
        pred += model['model'][k].predict(testData)
    pred = pred / kfold
    return pred
xgbbasemodel.py 文件源码 项目:Supply-demand-forecasting 作者: LevinJ 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def run_grid_search(self):
        """
        This method is called by derived class to start grid search process
        """
        features,labels,cv_folds = self.getFeaturesLabel()
        dtrain_cv  = xgb.DMatrix(features, label= labels,feature_names=features.columns)

        parameter_iterable = self.__get_param_iterable(self.__get_param_grid())  
        kwargs = self.get_learning_params()
        for param in parameter_iterable:
            logging.info("used parameters: {}".format(param))
            bst = xgb.cv(param, dtrain_cv, folds=cv_folds,**kwargs)
            self.__add_to_resultset(param, bst)

        self.__disp_result() 
        return
xgboost.py 文件源码 项目:AutoFolio 作者: mlindauer 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def predict(self, X):
        '''
            transform ASLib scenario data

            Arguments
            ---------
            X: numpy.array
                instance feature matrix

            Returns
            -------

        '''
        preds = np.array(self.model.predict(xgb.DMatrix(X)))
        preds[preds < 0.5] = 0
        preds[preds >= 0.5] = 1
        return preds
preprocess.py 文件源码 项目:tianchi_power 作者: lvniqi 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def crate_pre_train_model(x_,y_):
    (x_train,x_test) = train_test_split(x_,test_size=0.1,random_state=1)
    (y_train,y_test) = train_test_split(y_,test_size=0.1,random_state=1)
    dtrain = xgb.DMatrix( x_train, label=y_train)
    dtest = xgb.DMatrix( x_test, label=y_test)
    evallist  = [(dtrain,'train'),(dtest,'eval')]
    param = {'objective':'reg:linear','max_depth':3 }
    param['nthread'] = 64
    #param['min_child_weight'] = 15
    #param['subsample'] = 1
    #param['num_class'] = 7
    plst = param.items()
    num_round = 5000
    bst = xgb.train( plst, dtrain, num_round,
                    evallist,early_stopping_rounds=100,
                    #obj=logregobj,
                    feval=evalerror
                    )
    return bst

# %% main
dataset.py 文件源码 项目:instacart-basket-prediction 作者: colinmorris 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def as_dmatrix(self):
    path = self.dmatrix_cache_path
    # xgb is not try/except friendly here
    if os.path.exists(path):
      dm = xgb.DMatrix(path, feature_names=self.feature_names,
          feature_types=(self.feature_types if FTYPES else None)
          )
    else:
      logging.info('Cache miss on dmatrix. Building and caching.')
      dm = self._as_dmatrix()
      dm.save_binary(path)
    # We add on weights (if any) after the fact, to avoid proliferation of big
    # serialized dmatrix files.
    if self.weight_mode != 'none':
      weights = self.get_weights()
      dm.set_weight(weights)
    return dm
XGBoostTest.py 文件源码 项目:Tencent2017_Final_Coda_Allegro 作者: BladeCoda 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def predict_test_prob(bst):
    df_all=loadCSV('data/first_merge/test_join_v9.csv') 

    df_sta_lgbm=loadCSV('data/stacking/prob_lgbm_test.csv') 
    print('????')
    df_all=pd.merge(df_all,df_sta_lgbm,how='left',on='instanceID')
    del df_sta_lgbm

    instanceID=df_all.instanceID.values
    feature_all=df_all.drop(['label','clickTime','instanceID',
                             'residence','appCategory'],axis=1).values

    del df_all

    dtest=xgb.DMatrix(feature_all)
    prob=bst.predict(dtest)

    output=pd.DataFrame({'instanceID':instanceID,'prob':prob})

    output.to_csv('result/submission2.csv',index=False) 

#????
est_utils.py 文件源码 项目:gcForest 作者: kingfengji 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def xgb_train(train_config, X_train, y_train, X_test, y_test):
    import xgboost as xgb
    LOGGER.info("X_train.shape={}, y_train.shape={}, X_test.shape={}, y_test.shape={}".format(
        X_train.shape, y_train.shape, X_test.shape, y_test.shape))
    param = train_config["param"]
    xg_train = xgb.DMatrix(X_train, label=y_train)
    xg_test = xgb.DMatrix(X_test, label=y_test)
    num_round = int(train_config["num_round"])
    watchlist = [(xg_train, 'train'), (xg_test, 'test')]
    try:
        bst = xgb.train(param, xg_train, num_round, watchlist)
    except KeyboardInterrupt:
        LOGGER.info("Canceld by user's Ctrl-C action")
        return
    y_pred = np.argmax(bst.predict(xg_test), axis=1)
    acc = 100. * np.sum(y_pred == y_test) / len(y_test)
    LOGGER.info("accuracy={}%".format(acc))
util_xgb.py 文件源码 项目:Medium-crawler-with-data-analyzer 作者: lifei96 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def data_pre_process(train_path, test_path, label, drop_list=None):
    train_dataset = pandas.read_csv(train_path)
    if drop_list:
        train_dataset = train_dataset.drop(drop_list, axis=1)
    y_train = train_dataset[label].astype(int)
    print y_train.dtypes
    X_train = train_dataset.drop(label, axis=1)
    test_dataset = pandas.read_csv(test_path)
    if drop_list:
        test_dataset = test_dataset.drop(drop_list, axis=1)
    y_test = test_dataset[label].astype(int)
    print y_test.dtypes
    X_test = test_dataset.drop(label, axis=1)
    dtrain = xgb.DMatrix(X_train, label=y_train)
    dtest = xgb.DMatrix(X_test, label=y_test)
    return dtrain, dtest
relatedness.py 文件源码 项目:fnc-1 作者: shangjingbo1226 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def train_relatedness_classifier(trainX, trainY):
    xg_train = xgb.DMatrix(trainX, label=trainY)
    # setup parameters for xgboost
    param = {}
    # use softmax multi-class classification
    param['objective'] = 'binary:logistic'
    # scale weight of positive examples
    param['eta'] = 0.1
    param['max_depth'] = 6
    param['silent'] = 1
    param['nthread'] = 20

    num_round = 1000
    relatedness_classifier = xgb.train(param, xg_train, num_round);

    return relatedness_classifier
house_prices.py 文件源码 项目:HousePrices 作者: MizioAnd 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def predicted_vs_actual_sale_price_xgb(self, xgb_params, x_train, y_train, seed, title_name):
        # Split the training data into an extra set of test
        x_train_split, x_test_split, y_train_split, y_test_split = train_test_split(x_train, y_train)
        dtrain_split = xgb.DMatrix(x_train_split, label=y_train_split)
        dtest_split = xgb.DMatrix(x_test_split)

        res = xgb.cv(xgb_params, dtrain_split, num_boost_round=1000, nfold=4, seed=seed, stratified=False,
                     early_stopping_rounds=25, verbose_eval=10, show_stdv=True)

        best_nrounds = res.shape[0] - 1
        print(np.shape(x_train_split), np.shape(x_test_split), np.shape(y_train_split), np.shape(y_test_split))
        gbdt = xgb.train(xgb_params, dtrain_split, best_nrounds)
        y_predicted = gbdt.predict(dtest_split)
        plt.figure(figsize=(10, 5))
        plt.scatter(y_test_split, y_predicted, s=20)
        rmse_pred_vs_actual = self.rmse(y_predicted, y_test_split)
        plt.title(''.join([title_name, ', Predicted vs. Actual.', ' rmse = ', str(rmse_pred_vs_actual)]))
        plt.xlabel('Actual Sale Price')
        plt.ylabel('Predicted Sale Price')
        plt.plot([min(y_test_split), max(y_test_split)], [min(y_test_split), max(y_test_split)])
        plt.tight_layout()
test_boosted_trees_regression.py 文件源码 项目:coremltools 作者: apple 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def setUpClass(self):
        """
        Set up the unit test by loading the dataset and training a model.
        """
        if not HAS_XGBOOST:
            return
        if not HAS_SKLEARN:
            return

        scikit_data = load_boston()
        dtrain = xgboost.DMatrix(scikit_data.data, label = scikit_data.target,
                feature_names = scikit_data.feature_names)
        xgb_model = xgboost.train({}, dtrain, 1)

        # Save the data and the model
        self.scikit_data = scikit_data
        self.xgb_model = xgb_model
        self.feature_names = self.scikit_data.feature_names
__init__.py 文件源码 项目:mlprojects-py 作者: srinathperera 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def regression_with_xgboost_no_cv(x_train, y_train, X_test, Y_test, features=None, xgb_params=None, num_rounds = 10):
    train_data = xgb.DMatrix(x_train, label=y_train, missing=float('nan'))
    test_data = xgb.DMatrix(X_test, Y_test, missing=float('nan'))
    evallist  = [(train_data,'train'), (test_data,'eval')]

    if xgb_params is None:
        xgb_params = get_default_xgboost_params()
        print "xgb_params not found"

    print "XGBoost, using param", xgb_params
    gbdt = xgb.train(xgb_params, train_data, num_rounds, evallist, verbose_eval = True, early_stopping_rounds=5)

    isgbtree = xgb_params["booster"] == "gbtree"
    if isgbtree :
        ceate_feature_map_for_feature_importance(features)
        show_feature_importance(gbdt)
        y_pred = gbdt.predict(xgb.DMatrix(X_test, missing=float('nan')), ntree_limit=gbdt.best_ntree_limit)
    else:
        y_pred = gbdt.predict(xgb.DMatrix(X_test, missing=float('nan')))

    return XGBoostModel(gbdt), y_pred
s12_run_xgboost_only_train_create.py 文件源码 项目:KAGGLE_AVITO_2016 作者: ZFTurbo 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def run_train_with_model(train, features, model_path):
    start_time = time.time()

    gbm = xgb.Booster()
    gbm.load_model(model_path)

    print("Validating...")
    check = gbm.predict(xgb.DMatrix(train[features]))
    score = roc_auc_score(train['isDuplicate'].values, check)
    validation_df = pd.DataFrame({'itemID_1': train['itemID_1'].values, 'itemID_2': train['itemID_2'].values,
                                  'isDuplicate': train['isDuplicate'].values, 'probability': check})
    print('AUC score value: {:.6f}'.format(score))

    imp = get_importance(gbm, features)
    print('Importance array: ', imp)

    print('Prediction time: {} minutes'.format(round((time.time() - start_time)/60, 2)))
    return validation_df, score
s11_run_xgboost_only_test.py 文件源码 项目:KAGGLE_AVITO_2016 作者: ZFTurbo 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def run_test_with_model(train, test, features, model_path):
    start_time = time.time()

    gbm = xgb.Booster()
    gbm.load_model(model_path)

    print("Validating...")
    check = gbm.predict(xgb.DMatrix(train[features]))
    score = roc_auc_score(train['isDuplicate'].values, check)
    validation_df = pd.DataFrame({'isDuplicate': train['isDuplicate'].values, 'probability': check})
    # print(validation_df)
    print('AUC score value: {:.6f}'.format(score))
    # score1 = roc_auc_score(validation_df['isDuplicate'].values, validation_df['probability'])
    # print('AUC score check value: {:.6f}'.format(score1))


    imp = get_importance(gbm, features)
    print('Importance array: ', imp)

    print("Predict test set...")
    test_prediction = gbm.predict(xgb.DMatrix(test[features]))

    print('Training time: {} minutes'.format(round((time.time() - start_time)/60, 2)))
    return test_prediction.tolist(), validation_df, score
unExtGBDTEnsemble.py 文件源码 项目:CreditScoring 作者: cqw5 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def ExtGBDTEnsemblePredict(sub_clf_num, predict_x):
    """
    ????????
    :param sub_clf_num: ??????
    :param predict_x: ??????feature
    :return: socre: ndarray, ????
    """
    total_score = np.zeros(len(predict_x))  # ?????????????????
    for i in range(sub_clf_num):
        predict_X = xgb.DMatrix(predict_x)
        model_file = '../model/model' + str(i)
        bst = pickle.load(open(model_file, 'r'))
        predict_y = bst.predict(predict_X)
        total_score += predict_y
    score = total_score / sub_clf_num
    return score
otherModelForComparison.py 文件源码 项目:CreditScoring 作者: cqw5 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def ExtGBDT(train_x, train_y, test_x, test_y):
    """ Ext-GBDT """
    num_round = 100
    param = {'objective': 'binary:logistic', 'booster': 'gbtree', 'eta': 0.03, 'max_depth': 3, 'eval_metric': 'auc',
             'silent': 1, 'min_child_weight': 0.1, 'subsample': 0.7, 'colsample_bytree': 0.8, 'nthread': 4,
             'max_delta_step': 0}
    train_X = xgb.DMatrix(train_x, train_y)
    test_X = xgb.DMatrix(test_x)
    bst = xgb.train(param, train_X, num_round)
    pred = bst.predict(test_X)
    predict_y = []
    for i in range(len(pred)):
        if pred[i] < 0.5:
            predict_y.append(0)
        else:
            predict_y.append(1)
    auc = evaluate_auc(pred, test_y)
    evaluate(predict_y, test_y)
    return auc
script_xg.py 文件源码 项目:bank-product-recommender 作者: rohansapre 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def runXGB(train_X, train_y, seed_val=123):
  param = {}
  param['objective'] = 'multi:softprob'
  param['eta'] = 0.05
  param['max_depth'] = 6
  param['silent'] = 1
  param['num_class'] = 22
  param['eval_metric'] = "mlogloss"
  param['min_child_weight'] = 2
  param['subsample'] = 0.9
  param['colsample_bytree'] = 0.9
  param['seed'] = seed_val
  num_rounds = 115

  plst = list(param.items())
  xgtrain = xgb.DMatrix(train_X, label=train_y)
  model = xgb.train(plst, xgtrain, num_rounds)  
  return model
test_submission.py 文件源码 项目:KaggleExeter 作者: detomo 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def cross_validate(train):
    #separate training and validation set
    X_train,X_valid= split_train_validation(train)
    scores = []; preds = []
    for i in xrange(len(X_train)):
        #convert X_train, Y_train etc... to xgboost matrix
        dtrain = xgb.DMatrix(X_train[i][['phone_brand','device_model','timestamp']], label = X_train[i]['group'],missing=np.nan) 
        dvalid = xgb.DMatrix(X_valid[i][['phone_brand','device_model','timestamp']], label = X_valid[i]['group'],missing=np.nan)

        #predict with xgboost
        parameters = {'max_depth':4,'eta':0.1,'silent':1, 'subsample':0.8,'colsample_bytree':0.8,
                'objective':'multi:softprob','booster':'gbtree','early_stopping_rounds':50,
                'num_class':12,'num_boost_round':1000,'eval_metric':'mlogloss'}
        plst = parameters.items()
        bst = xgb.train(plst, dtrain)
        pred = bst.predict(dvalid)

        scores.append(log_loss(X_valid[i]['group'].tolist(),pred))
        pred = pd.DataFrame(pred, index = X_valid[i].index, columns=target_encoder.classes_)
        preds.append(pred)
    return scores, preds
test_core.py 文件源码 项目:dask-xgboost 作者: dask 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def test_basic(c, s, a, b):
    dtrain = xgb.DMatrix(df, label=labels)
    bst = xgb.train(param, dtrain)

    ddf = dd.from_pandas(df, npartitions=4)
    dlabels = dd.from_pandas(labels, npartitions=4)
    dbst = yield dxgb._train(c, param, ddf, dlabels)
    dbst = yield dxgb._train(c, param, ddf, dlabels)  # we can do this twice

    result = bst.predict(dtrain)
    dresult = dbst.predict(dtrain)

    correct = (result > 0.5) == labels
    dcorrect = (dresult > 0.5) == labels
    assert dcorrect.sum() >= correct.sum()

    predictions = dxgb.predict(c, dbst, ddf)
    assert isinstance(predictions, dd.Series)
    predictions = yield c.compute(predictions)._result()
    assert isinstance(predictions, pd.Series)

    assert ((predictions > 0.5) != labels).sum() < 2
test_core.py 文件源码 项目:dask-xgboost 作者: dask 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_dmatrix_kwargs(c, s, a, b):
    xgb.rabit.init()  # workaround for "Doing rabit call after Finalize"
    dX = da.from_array(X, chunks=(2, 2))
    dy = da.from_array(y, chunks=(2,))
    dbst = yield dxgb._train(c, param, dX, dy, {"missing": 0.0})

    # Distributed model matches local model with dmatrix kwargs
    dtrain = xgb.DMatrix(X, label=y, missing=0.0)
    bst = xgb.train(param, dtrain)
    result = bst.predict(dtrain)
    dresult = dbst.predict(dtrain)
    assert np.abs(result - dresult).sum() < 0.02

    # Distributed model gives bad predictions without dmatrix kwargs
    dtrain_incompat = xgb.DMatrix(X, label=y)
    dresult_incompat = dbst.predict(dtrain_incompat)
    assert np.abs(result - dresult_incompat).sum() > 0.02
test_core.py 文件源码 项目:dask-xgboost 作者: dask 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_numpy(c, s, a, b):
    xgb.rabit.init()  # workaround for "Doing rabit call after Finalize"
    dX = da.from_array(X, chunks=(2, 2))
    dy = da.from_array(y, chunks=(2,))
    dbst = yield dxgb._train(c, param, dX, dy)
    dbst = yield dxgb._train(c, param, dX, dy)  # we can do this twice

    dtrain = xgb.DMatrix(X, label=y)
    bst = xgb.train(param, dtrain)

    result = bst.predict(dtrain)
    dresult = dbst.predict(dtrain)

    correct = (result > 0.5) == y
    dcorrect = (dresult > 0.5) == y
    assert dcorrect.sum() >= correct.sum()

    predictions = dxgb.predict(c, dbst, dX)
    assert isinstance(predictions, da.Array)
    predictions = yield c.compute(predictions)._result()
    assert isinstance(predictions, np.ndarray)

    assert ((predictions > 0.5) != labels).sum() < 2
test_core.py 文件源码 项目:dask-xgboost 作者: dask 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_synchronous_api(loop):  # noqa
    dtrain = xgb.DMatrix(df, label=labels)
    bst = xgb.train(param, dtrain)

    ddf = dd.from_pandas(df, npartitions=4)
    dlabels = dd.from_pandas(labels, npartitions=4)

    with cluster() as (s, [a, b]):
        with Client(s['address'], loop=loop) as c:

            dbst = dxgb.train(c, param, ddf, dlabels)

            result = bst.predict(dtrain)
            dresult = dbst.predict(dtrain)

            correct = (result > 0.5) == labels
            dcorrect = (dresult > 0.5) == labels
            assert dcorrect.sum() >= correct.sum()
002_xgb_holdout_item_812_1.py 文件源码 项目:Instacart 作者: KazukiOnodera 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def split_build_valid():

    train_user['is_valid'] = np.random.choice([0,1], size=len(train_user), 
                                              p=[1-valid_size, valid_size])
    valid_n = train_user['is_valid'].sum()
    build_n = (train_user.shape[0] - valid_n)

    print('build user:{}, valid user:{}'.format(build_n, valid_n))
    valid_user = train_user[train_user['is_valid']==1].user_id
    is_valid = X_train.user_id.isin(valid_user)

    dbuild = xgb.DMatrix(X_train[~is_valid].drop('user_id', axis=1), y_train[~is_valid])
    dvalid = xgb.DMatrix(X_train[is_valid].drop('user_id', axis=1), label=y_train[is_valid])
    watchlist = [(dbuild, 'build'),(dvalid, 'valid')]

    print('FINAL SHAPE')
    print('dbuild.shape:{}  dvalid.shape:{}\n'.format((dbuild.num_row(), dbuild.num_col()),
                                                      (dvalid.num_row(), dvalid.num_col())))

    return dbuild, dvalid, watchlist

#==============================================================================
002_xgb_holdout_item_813_3.py 文件源码 项目:Instacart 作者: KazukiOnodera 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def split_build_valid():

    train_user['is_valid'] = np.random.choice([0,1], size=len(train_user), 
                                              p=[1-valid_size, valid_size])
    valid_n = train_user['is_valid'].sum()
    build_n = (train_user.shape[0] - valid_n)

    print('build user:{}, valid user:{}'.format(build_n, valid_n))
    valid_user = train_user[train_user['is_valid']==1].user_id
    is_valid = X_train.user_id.isin(valid_user)

    dbuild = xgb.DMatrix(X_train[~is_valid].drop('user_id', axis=1), y_train[~is_valid])
    dvalid = xgb.DMatrix(X_train[is_valid].drop('user_id', axis=1), label=y_train[is_valid])
    watchlist = [(dbuild, 'build'),(dvalid, 'valid')]

    print('FINAL SHAPE')
    print('dbuild.shape:{}  dvalid.shape:{}\n'.format((dbuild.num_row(), dbuild.num_col()),
                                                      (dvalid.num_row(), dvalid.num_col())))

    return dbuild, dvalid, watchlist

#==============================================================================
102_xgb_holdout_None_814_3.py 文件源码 项目:Instacart 作者: KazukiOnodera 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def split_build_valid():

    train_user['is_valid'] = np.random.choice([0,1], size=len(train_user), 
                                              p=[1-valid_size, valid_size])
    valid_n = train_user['is_valid'].sum()
    build_n = (train_user.shape[0] - valid_n)

    print('build user:{}, valid user:{}'.format(build_n, valid_n))
    valid_user = train_user[train_user['is_valid']==1].user_id
    is_valid = X_train.user_id.isin(valid_user)

    dbuild = xgb.DMatrix(X_train[~is_valid].drop('user_id', axis=1), y_train[~is_valid])
    dvalid = xgb.DMatrix(X_train[is_valid].drop('user_id', axis=1), label=y_train[is_valid])
    watchlist = [(dbuild, 'build'),(dvalid, 'valid')]

    label = dbuild.get_label()
    scale_pos_weight = float(np.sum(label == 0)) / np.sum(label==1)

    print('scale_pos_weight', scale_pos_weight)
    print('FINAL SHAPE')
    print('dbuild.shape:{}  dvalid.shape:{}\n'.format((dbuild.num_row(), dbuild.num_col()),
                                                      (dvalid.num_row(), dvalid.num_col())))

    return dbuild, dvalid, watchlist, scale_pos_weight
102_xgb_holdout_None_814_2.py 文件源码 项目:Instacart 作者: KazukiOnodera 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def split_build_valid():

    train_user['is_valid'] = np.random.choice([0,1], size=len(train_user), 
                                              p=[1-valid_size, valid_size])
    valid_n = train_user['is_valid'].sum()
    build_n = (train_user.shape[0] - valid_n)

    print('build user:{}, valid user:{}'.format(build_n, valid_n))
    valid_user = train_user[train_user['is_valid']==1].user_id
    is_valid = X_train.user_id.isin(valid_user)

    dbuild = xgb.DMatrix(X_train[~is_valid].drop('user_id', axis=1), y_train[~is_valid])
    dvalid = xgb.DMatrix(X_train[is_valid].drop('user_id', axis=1), label=y_train[is_valid])
    watchlist = [(dbuild, 'build'),(dvalid, 'valid')]

    label = dbuild.get_label()
    scale_pos_weight = float(np.sum(label == 0)) / np.sum(label==1)

    print('scale_pos_weight', scale_pos_weight)
    print('FINAL SHAPE')
    print('dbuild.shape:{}  dvalid.shape:{}\n'.format((dbuild.num_row(), dbuild.num_col()),
                                                      (dvalid.num_row(), dvalid.num_col())))

    return dbuild, dvalid, watchlist, scale_pos_weight
102_xgb_holdout_None_814_1.py 文件源码 项目:Instacart 作者: KazukiOnodera 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def split_build_valid():

    train_user['is_valid'] = np.random.choice([0,1], size=len(train_user), 
                                              p=[1-valid_size, valid_size])
    valid_n = train_user['is_valid'].sum()
    build_n = (train_user.shape[0] - valid_n)

    print('build user:{}, valid user:{}'.format(build_n, valid_n))
    valid_user = train_user[train_user['is_valid']==1].user_id
    is_valid = X_train.user_id.isin(valid_user)

    dbuild = xgb.DMatrix(X_train[~is_valid].drop('user_id', axis=1), y_train[~is_valid])
    dvalid = xgb.DMatrix(X_train[is_valid].drop('user_id', axis=1), label=y_train[is_valid])
    watchlist = [(dbuild, 'build'),(dvalid, 'valid')]

    label = dbuild.get_label()
    scale_pos_weight = float(np.sum(label == 0)) / np.sum(label==1)

    print('scale_pos_weight', scale_pos_weight)
    print('FINAL SHAPE')
    print('dbuild.shape:{}  dvalid.shape:{}\n'.format((dbuild.num_row(), dbuild.num_col()),
                                                      (dvalid.num_row(), dvalid.num_col())))

    return dbuild, dvalid, watchlist, scale_pos_weight


问题


面经


文章

微信
公众号

扫码关注公众号