python类Visdom()的实例源码

visualizer.py 文件源码 项目:DistanceGAN 作者: sagiebenaim 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, opt):
        # self.opt = opt
        self.display_id = opt.display_id
        self.use_html = opt.isTrain and not opt.no_html
        self.win_size = opt.display_winsize
        self.name = opt.name
        if self.display_id > 0:
            import visdom
            self.vis = visdom.Visdom()

        if self.use_html:
            self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web')
            self.img_dir = os.path.join(self.web_dir, 'images')
            print('create web directory %s...' % self.web_dir)
            util.mkdirs([self.web_dir, self.img_dir])


    # |visuals|: dictionary of images to display or save
visualizer.py 文件源码 项目:DeblurGAN 作者: KupynOrest 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self, opt):
        # self.opt = opt
        self.display_id = opt.display_id
        self.use_html = opt.isTrain and not opt.no_html
        self.win_size = opt.display_winsize
        self.name = opt.name
        if self.display_id > 0:
            import visdom
            self.vis = visdom.Visdom(port = opt.display_port)
            self.display_single_pane_ncols = opt.display_single_pane_ncols

        if self.use_html:
            self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web')
            self.img_dir = os.path.join(self.web_dir, 'images')
            print('create web directory %s...' % self.web_dir)
            util.mkdirs([self.web_dir, self.img_dir])
        self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt')
        with open(self.log_name, "a") as log_file:
            now = time.strftime("%c")
            log_file.write('================ Training Loss (%s) ================\n' % now)

    # |visuals|: dictionary of images to display or save
visdomlogger.py 文件源码 项目:tnt 作者: pytorch 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, plot_type, fields=None, win=None, env=None, opts={}, port=8097):
        '''
            Args:
                fields: Currently unused
                plot_type: The name of the plot type, in Visdom

            Examples:
                >>> # Image example
                >>> img_to_use = skimage.data.coffee().swapaxes(0,2).swapaxes(1,2)
                >>> image_logger = VisdomLogger('image')
                >>> image_logger.log(img_to_use)

                >>> # Histogram example
                >>> hist_data = np.random.rand(10000)
                >>> hist_logger = VisdomLogger('histogram', , opts=dict(title='Random!', numbins=20))
                >>> hist_logger.log(hist_data)
        '''
        super(VisdomLogger, self).__init__(fields, win, env, opts, port)
        self.plot_type = plot_type
        self.chart = getattr(self.viz, plot_type)
        self.viz_logger = self._viz_prototype(self.chart)
visualizer.py 文件源码 项目:CycleGANwithPerceptionLoss 作者: EliasVansteenkiste 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __init__(self, opt):
        # self.opt = opt
        self.display_id = opt.display_id
        self.use_html = opt.isTrain and not opt.no_html
        self.win_size = opt.display_winsize
        self.name = opt.name
        if self.display_id > 0:
            import visdom
            self.vis = visdom.Visdom(port = opt.display_port)
            self.display_single_pane_ncols = opt.display_single_pane_ncols

        if self.use_html:
            self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web')
            self.img_dir = os.path.join(self.web_dir, 'images')
            print('create web directory %s...' % self.web_dir)
            util.mkdirs([self.web_dir, self.img_dir])
        self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt')
        with open(self.log_name, "a") as log_file:
            now = time.strftime("%c")
            log_file.write('================ Training Loss (%s) ================\n' % now)

    # |visuals|: dictionary of images to display or save
visualizer.py 文件源码 项目:pytorch_cycle_gan 作者: jinfagang 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, opt):
        # self.opt = opt
        self.display_id = opt.display_id
        self.use_html = opt.isTrain and not opt.no_html
        self.win_size = opt.display_winsize
        self.name = opt.name
        if self.display_id > 0:
            import visdom
            self.vis = visdom.Visdom()

        if self.use_html:
            self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web')
            self.img_dir = os.path.join(self.web_dir, 'images')
            print('create web directory %s...' % self.web_dir)
            util.mkdirs([self.web_dir, self.img_dir])


    # |visuals|: dictionary of images to display or save
plotter.py 文件源码 项目:logger 作者: oval-group 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self, xp, visdom_opts, xlabel):
        super(Plotter, self).__init__()

        if visdom_opts is None:
            visdom_opts = {}

        assert visdom is not None, "visdom could not be imported"

        # visdom env is given by Experiment name unless specified
        if 'env' not in list(visdom_opts.keys()):
            visdom_opts['env'] = xp.name

        self.viz = visdom.Visdom(**visdom_opts)
        self.xlabel = None if xlabel is None else str(xlabel)
        self.windows = {}
        self.append = {}
        self.cache = defaultdict(Cache)
visualizer.py 文件源码 项目:pytorch-CycleGAN-and-pix2pix 作者: junyanz 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self, opt):
        # self.opt = opt
        self.display_id = opt.display_id
        self.use_html = opt.isTrain and not opt.no_html
        self.win_size = opt.display_winsize
        self.name = opt.name
        self.opt = opt
        self.saved = False
        if self.display_id > 0:
            import visdom
            self.vis = visdom.Visdom(port=opt.display_port)

        if self.use_html:
            self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web')
            self.img_dir = os.path.join(self.web_dir, 'images')
            print('create web directory %s...' % self.web_dir)
            util.mkdirs([self.web_dir, self.img_dir])
        self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt')
        with open(self.log_name, "a") as log_file:
            now = time.strftime("%c")
            log_file.write('================ Training Loss (%s) ================\n' % now)
visualizer.py 文件源码 项目:wasserstein-cyclegan 作者: abhiskk 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, opt):
        # self.opt = opt
        self.display_id = opt.display_id
        self.use_html = opt.isTrain and not opt.no_html
        self.win_size = opt.display_winsize
        self.name = opt.name
        if self.display_id > 0:
            import visdom
            self.vis = visdom.Visdom()

        if self.use_html:
            self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web')
            self.img_dir = os.path.join(self.web_dir, 'images')
            print('create web directory %s...' % self.web_dir)
            util.mkdirs([self.web_dir, self.img_dir])


    # |visuals|: dictionary of images to display or save
loggers.py 文件源码 项目:seqmod 作者: emanjavacas 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self,
                 env=None,
                 log_checkpoints=True,
                 losses=('loss', ),
                 phases=('train', 'valid'),
                 server='http://localhost',
                 port=8097,
                 max_y=None,
                 **opts):
        if Visdom is None:
            warnings.warn("Couldn't import visdom: `pip install visdom`")
        else:
            self.viz = Visdom(server=server, port=port, env=env)

        self.legend = ['{}.{}'.format(p, l) for p in phases for l in losses]
        opts.update({'legend': self.legend})
        self.opts = opts
        self.env = env
        self.max_y = max_y
        self.log_checkpoints = log_checkpoints
        self.losses = set(losses)
        self.last = {p: {l: None for l in losses} for p in phases}
        self.pane = self._init_pane()
wrappers.py 文件源码 项目:categorical-dqn 作者: floringogianu 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, env, cmdl):
        super(VisdomMonitor, self).__init__(env)

        self.freq = cmdl.report_freq  # in steps
        self.cmdl = cmdl

        if self.cmdl.display_plots:
            from visdom import Visdom
            self.vis = Visdom()
            self.plot = self.vis.line(
                Y=np.array([0]), X=np.array([0]),
                opts=dict(
                    title=cmdl.label,
                    caption="Episodic reward per 1200 steps.")
            )

        self.step_cnt = 0
        self.ep_cnt = -1
        self.ep_rw = []
        self.last_reported_ep = 0
visualizer.py 文件源码 项目:VIGAN 作者: chaoshangcs 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, opt):
        # self.opt = opt
        self.display_id = opt.display_id
        self.use_html = not opt.no_html
        self.name = opt.name
        if self.display_id > 0:
            import visdom
            self.vis = visdom.Visdom()

        if self.use_html:
            self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web')
            self.img_dir = os.path.join(self.web_dir, 'images')
            self.win_size = opt.display_winsize
            print('create web directory %s...' % self.web_dir)
            util.mkdirs([self.web_dir, self.img_dir])


    # |visuals|: dictionary of images to display or save
train.py 文件源码 项目:pytorch-semseg 作者: meetshah1995 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def train(args):

    # Setup Dataloader
    data_loader = get_loader(args.dataset)
    data_path = get_data_path(args.dataset)
    loader = data_loader(data_path, is_transform=True, img_size=(args.img_rows, args.img_cols))
    n_classes = loader.n_classes
    trainloader = data.DataLoader(loader, batch_size=args.batch_size, num_workers=4, shuffle=True)

    # Setup visdom for visualization
    if args.visdom:
        vis = visdom.Visdom()

        loss_window = vis.line(X=torch.zeros((1,)).cpu(),
                           Y=torch.zeros((1)).cpu(),
                           opts=dict(xlabel='minibatches',
                                     ylabel='Loss',
                                     title='Training Loss',
                                     legend=['Loss']))

    # Setup Model
    model = get_model(args.arch, n_classes)

    model = torch.nn.DataParallel(model, device_ids=range(torch.cuda.device_count()))
    model.cuda()
    optimizer = torch.optim.SGD(model.parameters(), lr=args.l_rate, momentum=0.99, weight_decay=5e-4)

    for epoch in range(args.n_epoch):
        for i, (images, labels) in enumerate(trainloader):
            images = Variable(images.cuda())
            labels = Variable(labels.cuda())

            optimizer.zero_grad()
            outputs = model(images)

            loss = cross_entropy2d(outputs, labels)

            loss.backward()
            optimizer.step()

            if args.visdom:
                vis.line(
                    X=torch.ones((1, 1)).cpu() * i,
                    Y=torch.Tensor([loss.data[0]]).unsqueeze(0).cpu(),
                    win=loss_window,
                    update='append')

            if (i+1) % 20 == 0:
                print("Epoch [%d/%d] Loss: %.4f" % (epoch+1, args.n_epoch, loss.data[0]))

        torch.save(model, "{}_{}_{}_{}.pkl".format(args.arch, args.dataset, args.feature_scale, epoch))
visdomlogger.py 文件源码 项目:tnt 作者: pytorch 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, fields=None, win=None, env=None, opts={}, port=8097):
        super(BaseVisdomLogger, self).__init__(fields)
        self.win = win
        self.env = env
        self.opts = opts
        self._viz = visdom.Visdom(port=port)
visdomlogger.py 文件源码 项目:tnt 作者: pytorch 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _viz_prototype(self, vis_fn):
        ''' Outputs a function which will log the arguments to Visdom in an appropriate way.

            Args:
                vis_fn: A function, such as self.vis.image
        '''
        def _viz_logger(*args, **kwargs):
            self.win = vis_fn(*args,
                              win=self.win,
                              env=self.env,
                              opts=self.opts,
                              **kwargs)
        return _viz_logger
visdomlogger.py 文件源码 项目:tnt 作者: pytorch 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, envs=None, port=8097):
        super(VisdomSaver, self).__init__()
        self.envs = envs
        self.viz = visdom.Visdom(port=port)
onlineboard.py 文件源码 项目:ExperimentPackage_PyTorch 作者: ICEORY 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, env):
        try:
            self.viz = visdom.Visdom()
        except:
            self.viz = None
            print "Enter Cmd: python -m visdom.server on shell"
        self.env = env
        self.win = None
visdom_logger.py 文件源码 项目:pytorch-visdom 作者: alexsax 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def _viz_prototype(self, vis_fn):
        ''' Outputs a function which will log the arguments to Visdom in an appropriate way.

            Args:
                vis_fn: A function, such as self.vis.image
        '''
        def _viz_logger(*args, **kwargs):
            self.win = vis_fn(*args, 
                    win=self.win,
                    env=self.env,
                    opts=self.opts, 
                    **kwargs)
        return _viz_logger
visdom_logger.py 文件源码 项目:pytorch-visdom 作者: alexsax 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, envs=None, interval=[(1, 'epoch')]):
        super(VisdomSaver, self).__init__(interval)
        self.envs = envs
        self.viz = visdom.Visdom()
visdom_logger.py 文件源码 项目:pytorch-visdom 作者: alexsax 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, plot_type, fields, interval=None, win=None, env=None, opts={}):
        '''
            Args:
                plot_type: The name of the plot type, in Visdom
                fields: The fields to log. May either be the name of some stat (e.g. ProgressMonitor)
                    will have `stat_name='progress'`, in which case all of the fields under 
                    `log_HOOK_fields` will be logged. Finer-grained control can be specified
                    by using individual fields such as `progress.percent`. 
                interval: A List of 2-tuples where each tuple contains (k, HOOK_TIME). 
                    k (int): The logger will be called every 'k' HOOK_TIMES
                    HOOK_TIME (string): The logger will be called at the given hook

            Examples:
                >>> # Image example
                >>> img_to_use = skimage.data.coffee().swapaxes(0,2).swapaxes(1,2)
                >>> image_plug = ConstantMonitor(img_to_use, "image")
                >>> image_logger   = VisdomLogger('image', ["image.data"], [(2, 'iteration')])

                >>> # Histogram example
                >>> hist_plug = ConstantMonitor(np.random.rand(10000), "random")
                >>> hist_logger = VisdomLogger('histogram', ["random.data"], [(2, 'iteration')], opts=dict(title='Random!', numbins=20))
        '''
        super(VisdomLogger, self).__init__(fields, interval, win, env, opts)
        self.plot_type = plot_type
        self.chart = getattr(self.viz, plot_type)
        self.viz_logger = self._viz_prototype(self.chart)
main.py 文件源码 项目:conditional-similarity-networks 作者: andreasveit 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self, env_name='main'):
        self.viz = Visdom()
        self.env = env_name
        self.plots = {}
vis.py 文件源码 项目:end-to-end-negotiator 作者: facebookresearch 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def __init__(self, metrics, title, ylabel, xlabel='t', running_n=100):
        self.vis = visdom.Visdom()
        self.metrics = metrics
        self.opts = dict(
            fillarea=False,
            xlabel=xlabel,
            ylabel=ylabel,
            title=title,
        )
        self.win = None
        self.running_n = running_n
        self.vals = dict()
        self.cnts = dict()
visualize.py 文件源码 项目:PyTorchText 作者: chenyuntc 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, env='default', **kwargs):
        import visdom
        self.vis = visdom.Visdom(env=env, **kwargs)

        # ?????????????
        # ???’loss',23? ?loss??23??
        self.index = {} 
        self.log_text = ''
visualize.py 文件源码 项目:PyTorchText 作者: chenyuntc 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def reinit(self,env='default',**kwargs):
        '''
        ??visdom???
        '''
        self.vis = visdom.Visdom(env=env,**kwargs)
        return self
3dgan_mit_biasfree.py 文件源码 项目:tf-3dgan 作者: meetshah1995 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def testGAN(trained_model_path=None, n_batches=40):

    weights = initialiseWeights()

    z_vector = tf.placeholder(shape=[batch_size,z_size],dtype=tf.float32) 
    net_g_test = generator(z_vector, phase_train=True, reuse=True)

    vis = visdom.Visdom()

    sess = tf.Session()
    saver = tf.train.Saver()

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        saver.restore(sess, trained_model_path) 

        # output generated chairs
        for i in range(n_batches):
            next_sigma = float(raw_input())
            z_sample = np.random.normal(0, next_sigma, size=[batch_size, z_size]).astype(np.float32)
            g_objects = sess.run(net_g_test,feed_dict={z_vector:z_sample})
            id_ch = np.random.randint(0, batch_size, 4)
            for i in range(4):
                print g_objects[id_ch[i]].max(), g_objects[id_ch[i]].min(), g_objects[id_ch[i]].shape
                if g_objects[id_ch[i]].max() > 0.5:
                    d.plotVoxelVisdom(np.squeeze(g_objects[id_ch[i]]>0.5), vis, '_'.join(map(str,[i])))
server.py 文件源码 项目:visdom 作者: facebookresearch 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def initialize(self, state, subs):
        self.state = state
        self.subs = subs
        self.vis = visdom.Visdom(port=FLAGS.port, send=False)
        self.handlers = {
            'update': UpdateHandler,
            'save': SaveHandler,
            'close': CloseHandler,
            'win_exists': ExistsHandler,
        }
reporting.py 文件源码 项目:baseline 作者: dpressel 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def visdom_reporting(metrics, tick, phase, tick_type=None):
    """This method will write its results to visdom

    :param metrics: A map of metrics to scores
    :param tick: The time (resolution defined by `tick_type`)
    :param phase: The phase of training (`Train`, `Valid`, `Test`)
    :param tick_type: The resolution of tick (`STEP`, `EPOCH`)
    :return:
    """
    # To use this:
    # python -m visdom.server
    # http://localhost:8097/
    global g_vis
    global g_vis_win

    if g_vis is None:
        import visdom
        print('Creating g_vis instance')
        g_vis = visdom.Visdom()

    for metric in metrics.keys():
        chart_id = '(%s) %s' % (phase, metric)

        if chart_id not in g_vis_win:
            print('Creating visualization for %s' % chart_id)
            g_vis_win[chart_id] = g_vis.line(X=np.array([0]),
                                             Y=np.array([metrics[metric]]),
                                             opts=dict(
                                                 fillarea=True,
                                                 legend=False,
                                                 xlabel='Time',
                                                 ylabel='Metric',
                                                 title=chart_id,
                                             ),
                                         )
        else:
            g_vis.updateTrace(X=np.array([tick]), Y=np.array([metrics[metric]]), win=g_vis_win[chart_id])
wrappers.py 文件源码 项目:categorical-dqn 作者: floringogianu 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, env, cmdl):
        super(EvaluationMonitor, self).__init__(env)

        self.freq = cmdl.eval_frequency  # in steps
        self.eval_steps = cmdl.eval_steps
        self.cmdl = cmdl

        if self.cmdl.display_plots:
            import Visdom
            self.vis = Visdom()
            self.plot = self.vis.line(
                Y=np.array([0]), X=np.array([0]),
                opts=dict(
                    title=cmdl.label,
                    caption="Episodic reward per %d steps." % self.eval_steps)
            )

        self.eval_cnt = 0
        self.crt_training_step = 0
        self.step_cnt = 0
        self.ep_cnt = 1
        self.total_rw = 0
        self.max_mean_rw = -1000

        no_of_evals = cmdl.training_steps // cmdl.eval_frequency \
            - (cmdl.eval_start-1) // cmdl.eval_frequency

        self.eval_frame_idx = torch.LongTensor(no_of_evals).fill_(0)
        self.eval_rw_per_episode = torch.FloatTensor(no_of_evals).fill_(0)
        self.eval_rw_per_frame = torch.FloatTensor(no_of_evals).fill_(0)
        self.eval_eps_per_eval = torch.LongTensor(no_of_evals).fill_(0)
visualizer.py 文件源码 项目:pytorchnet 作者: human-analysis 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self, port, title):

        self.keys = []
        self.values = {}        
        self.viz = visdom.Visdom(port=port)
        self.iteration = 0
        self.title = title
train.py 文件源码 项目:triplet-network-pytorch 作者: andreasveit 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, env_name='main'):
        self.viz = Visdom()
        self.env = env_name
        self.plots = {}
util.py 文件源码 项目:inverse-compositional-STN 作者: ericlin79119 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self,opt):
        self.vis = visdom.Visdom(port=opt.port)
        self.trainLossInit = True
        self.testLossInit = True
        self.meanVarInit = True


问题


面经


文章

微信
公众号

扫码关注公众号