python类Timer()的实例源码

test.py 文件源码 项目:yolo_tensorflow 作者: hizhangp 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def camera_detector(self, cap, wait=10):
        detect_timer = Timer()
        ret, _ = cap.read()

        while ret:
            ret, frame = cap.read()
            detect_timer.tic()
            result = self.detect(frame)
            detect_timer.toc()
            print('Average detecting time: {:.3f}s'.format(detect_timer.average_time))

            self.draw_result(frame, result)
            cv2.imshow('Camera', frame)
            cv2.waitKey(wait)

            ret, frame = cap.read()
train.py 文件源码 项目:dpl 作者: ppengtang 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def train_model(self, max_iters):
        """Network training loop."""
        last_snapshot_iter = -1
        timer = Timer()
        while self.solver.iter < max_iters:
            # Make one SGD update
            timer.tic()

            self.solver.step(1)

            timer.toc()
            if self.solver.iter % (10 * self.solver_param.display) == 0:
                print 'speed: {:.3f}s / iter'.format(timer.average_time)

            if self.solver.iter % cfg.TRAIN.SNAPSHOT_ITERS == 0:
                last_snapshot_iter = self.solver.iter
                self.snapshot()

        if last_snapshot_iter != self.solver.iter:
            self.snapshot()
train.py 文件源码 项目:adversarial-frcnn 作者: xiaolonw 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def train_model(self, max_iters):
        """Network training loop."""
        last_snapshot_iter = -1
        timer = Timer()
        model_paths = []
        while self.solver.iter < max_iters:
            # Make one SGD update
            timer.tic()
            self.solver.step(1)
            timer.toc()
            if self.solver.iter % (10 * self.solver_param.display) == 0:
                print 'speed: {:.3f}s / iter'.format(timer.average_time)

            if self.solver.iter % cfg.TRAIN.SNAPSHOT_ITERS == 0:
                last_snapshot_iter = self.solver.iter
                model_paths.append(self.snapshot())

        if last_snapshot_iter != self.solver.iter:
            model_paths.append(self.snapshot())
        return model_paths
generate.py 文件源码 项目:adversarial-frcnn 作者: xiaolonw 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def imdb_proposals(net, imdb):
    """Generate RPN proposals on all images in an imdb."""

    _t = Timer()
    imdb_boxes = [[] for _ in xrange(imdb.num_images)]
    for i in xrange(imdb.num_images):
        im = cv2.imread(imdb.image_path_at(i))
        _t.tic()
        imdb_boxes[i], scores = im_proposals(net, im)
        _t.toc()
        print 'im_proposals: {:d}/{:d} {:.3f}s' \
              .format(i + 1, imdb.num_images, _t.average_time)
        if 0:
            dets = np.hstack((imdb_boxes[i], scores))
            # from IPython import embed; embed()
            _vis_proposals(im, dets[:3, :], thresh=0.9)
            plt.show()

    return imdb_boxes
train_svms.py 文件源码 项目:adversarial-frcnn 作者: xiaolonw 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _get_feature_scale(self, num_images=100):
        TARGET_NORM = 20.0 # Magic value from traditional R-CNN
        _t = Timer()
        roidb = self.imdb.roidb
        total_norm = 0.0
        count = 0.0
        inds = npr.choice(xrange(self.imdb.num_images), size=num_images,
                          replace=False)
        for i_, i in enumerate(inds):
            im = cv2.imread(self.imdb.image_path_at(i))
            if roidb[i]['flipped']:
                im = im[:, ::-1, :]
            _t.tic()
            scores, boxes = im_detect(self.net, im, roidb[i]['boxes'])
            _t.toc()
            feat = self.net.blobs[self.layer].data
            total_norm += np.sqrt((feat ** 2).sum(axis=1)).sum()
            count += feat.shape[0]
            print('{}/{}: avg feature norm: {:.3f}'.format(i_ + 1, num_images,
                                                           total_norm / count))

        return TARGET_NORM * 1.0 / (total_norm / count)
train.py 文件源码 项目:fast-rcnn-distillation 作者: xiaolonw 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def train_model(self, max_iters):
        """Network training loop."""
        last_snapshot_iter = -1
        timer = Timer()
        while self.solver.iter < max_iters:
            # Make one SGD update
            timer.tic()
            self.solver.step(1)
            timer.toc()
            if self.solver.iter % (10 * self.solver_param.display) == 0:
                print 'speed: {:.3f}s / iter'.format(timer.average_time)

            if self.solver.iter % cfg.TRAIN.SNAPSHOT_ITERS == 0:
                last_snapshot_iter = self.solver.iter
                self.snapshot()

        if last_snapshot_iter != self.solver.iter:
            self.snapshot()
train_svms.py 文件源码 项目:fast-rcnn-distillation 作者: xiaolonw 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _get_feature_scale(self, num_images=100):
        TARGET_NORM = 20.0 # Magic value from traditional R-CNN
        _t = Timer()
        roidb = self.imdb.roidb
        total_norm = 0.0
        count = 0.0
        inds = npr.choice(xrange(self.imdb.num_images), size=num_images,
                          replace=False)
        for i_, i in enumerate(inds):
            im = cv2.imread(self.imdb.image_path_at(i))
            if roidb[i]['flipped']:
                im = im[:, ::-1, :]
            _t.tic()
            scores, boxes = im_detect(self.net, im, roidb[i]['boxes'])
            _t.toc()
            feat = self.net.blobs[self.layer].data
            total_norm += np.sqrt((feat ** 2).sum(axis=1)).sum()
            count += feat.shape[0]
            print('{}/{}: avg feature norm: {:.3f}'.format(i_ + 1, num_images,
                                                           total_norm / count))

        return TARGET_NORM * 1.0 / (total_norm / count)
train.py 文件源码 项目:faster-rcnn-resnet 作者: Eniac-Xie 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def train_model(self, max_iters):
        """Network training loop."""
        last_snapshot_iter = -1
        timer = Timer()
        model_paths = []
        while self.solver.iter < max_iters:
            # Make one SGD update
            timer.tic()
            self.solver.step(1)
            timer.toc()
            if self.solver.iter % (10 * self.solver_param.display) == 0:
                print 'speed: {:.3f}s / iter'.format(timer.average_time)

            if self.solver.iter % cfg.TRAIN.SNAPSHOT_ITERS == 0:
                last_snapshot_iter = self.solver.iter
                model_paths.append(self.snapshot())

        if last_snapshot_iter != self.solver.iter:
            model_paths.append(self.snapshot())
        return model_paths
generate.py 文件源码 项目:faster-rcnn-resnet 作者: Eniac-Xie 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def imdb_proposals(net, imdb):
    """Generate RPN proposals on all images in an imdb."""

    _t = Timer()
    imdb_boxes = [[] for _ in xrange(imdb.num_images)]
    for i in xrange(imdb.num_images):
        im = cv2.imread(imdb.image_path_at(i))
        _t.tic()
        imdb_boxes[i], scores = im_proposals(net, im)
        _t.toc()
        print 'im_proposals: {:d}/{:d} {:.3f}s' \
              .format(i + 1, imdb.num_images, _t.average_time)
        if 0:
            dets = np.hstack((imdb_boxes[i], scores))
            # from IPython import embed; embed()
            _vis_proposals(im, dets[:3, :], thresh=0.9)
            plt.show()

    return imdb_boxes
train_svms.py 文件源码 项目:faster-rcnn-resnet 作者: Eniac-Xie 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _get_feature_scale(self, num_images=100):
        TARGET_NORM = 20.0 # Magic value from traditional R-CNN
        _t = Timer()
        roidb = self.imdb.roidb
        total_norm = 0.0
        count = 0.0
        inds = npr.choice(xrange(self.imdb.num_images), size=num_images,
                          replace=False)
        for i_, i in enumerate(inds):
            im = cv2.imread(self.imdb.image_path_at(i))
            if roidb[i]['flipped']:
                im = im[:, ::-1, :]
            _t.tic()
            scores, boxes = im_detect(self.net, im, roidb[i]['boxes'])
            _t.toc()
            feat = self.net.blobs[self.layer].data
            total_norm += np.sqrt((feat ** 2).sum(axis=1)).sum()
            count += feat.shape[0]
            print('{}/{}: avg feature norm: {:.3f}'.format(i_ + 1, num_images,
                                                           total_norm / count))

        return TARGET_NORM * 1.0 / (total_norm / count)
train.py 文件源码 项目:CoupleNet 作者: tshizys 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def train_model(self, max_iters):
        """Network training loop."""
        last_snapshot_iter = -1
        timer = Timer()
        model_paths = []
        while self.solver.iter < max_iters:
            # Make one SGD update
            timer.tic()
            self.solver.step(1)
            timer.toc()
            if self.solver.iter % (10 * self.solver_param.display) == 0:
                print 'speed: {:.3f}s / iter'.format(timer.average_time)

            if self.solver.iter % cfg.TRAIN.SNAPSHOT_ITERS == 0:
                last_snapshot_iter = self.solver.iter
                model_paths.append(self.snapshot())

        if last_snapshot_iter != self.solver.iter:
            model_paths.append(self.snapshot())
        return model_paths
train.py 文件源码 项目:py-faster-rcnn-tk1 作者: joeking11829 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def train_model(self, max_iters):
        """Network training loop."""
        last_snapshot_iter = -1
        timer = Timer()
        model_paths = []
        while self.solver.iter < max_iters:
            # Make one SGD update
            timer.tic()
            self.solver.step(1)
            timer.toc()
            if self.solver.iter % (10 * self.solver_param.display) == 0:
                print 'speed: {:.3f}s / iter'.format(timer.average_time)

            if self.solver.iter % cfg.TRAIN.SNAPSHOT_ITERS == 0:
                last_snapshot_iter = self.solver.iter
                model_paths.append(self.snapshot())

        if last_snapshot_iter != self.solver.iter:
            model_paths.append(self.snapshot())
        return model_paths
generate.py 文件源码 项目:py-faster-rcnn-tk1 作者: joeking11829 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def imdb_proposals(net, imdb):
    """Generate RPN proposals on all images in an imdb."""

    _t = Timer()
    imdb_boxes = [[] for _ in xrange(imdb.num_images)]
    for i in xrange(imdb.num_images):
        im = cv2.imread(imdb.image_path_at(i))
        _t.tic()
        imdb_boxes[i], scores = im_proposals(net, im)
        _t.toc()
        print 'im_proposals: {:d}/{:d} {:.3f}s' \
              .format(i + 1, imdb.num_images, _t.average_time)
        if 0:
            dets = np.hstack((imdb_boxes[i], scores))
            # from IPython import embed; embed()
            _vis_proposals(im, dets[:3, :], thresh=0.9)
            plt.show()

    return imdb_boxes
train_svms.py 文件源码 项目:py-faster-rcnn-tk1 作者: joeking11829 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def _get_feature_scale(self, num_images=100):
        TARGET_NORM = 20.0 # Magic value from traditional R-CNN
        _t = Timer()
        roidb = self.imdb.roidb
        total_norm = 0.0
        count = 0.0
        inds = npr.choice(xrange(self.imdb.num_images), size=num_images,
                          replace=False)
        for i_, i in enumerate(inds):
            im = cv2.imread(self.imdb.image_path_at(i))
            if roidb[i]['flipped']:
                im = im[:, ::-1, :]
            _t.tic()
            scores, boxes = im_detect(self.net, im, roidb[i]['boxes'])
            _t.toc()
            feat = self.net.blobs[self.layer].data
            total_norm += np.sqrt((feat ** 2).sum(axis=1)).sum()
            count += feat.shape[0]
            print('{}/{}: avg feature norm: {:.3f}'.format(i_ + 1, num_images,
                                                           total_norm / count))

        return TARGET_NORM * 1.0 / (total_norm / count)
train.py 文件源码 项目:py-faster-rcnn-resnet-imagenet 作者: tianzhi0549 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def train_model(self, max_iters):
        """Network training loop."""
        last_snapshot_iter = -1
        timer = Timer()
        model_paths = []
        while self.solver.iter < max_iters:
            # Make one SGD update
            timer.tic()
            self.solver.step(1)
            timer.toc()

            if self.solver.iter % (10 * self.solver_param.display) == 0:
                sys.stderr.write('rank: {} iteration: {} speed: {:.3f}s / iter\n'.format(self.rank, self.solver.iter, timer.average_time))

            if self.rank == 0 and self.solver.iter % cfg.TRAIN.SNAPSHOT_ITERS == 0:
                last_snapshot_iter = self.solver.iter
                model_paths.append(self.snapshot())

        if self.rank == 0 and last_snapshot_iter != self.solver.iter:
            model_paths.append(self.snapshot())
        return model_paths
generate.py 文件源码 项目:py-faster-rcnn-resnet-imagenet 作者: tianzhi0549 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def imdb_proposals(net, imdb, rank, count, output_dir):
    """Generate RPN proposals on all images in an imdb."""

    _t = Timer()
    for i in xrange(rank, imdb.num_images, count): # imdb.num_images
        im = cv2.imread(imdb.image_path_at(i))
        _t.tic()
        imdb_boxes, scores = im_proposals(net, im)
        with open(osp.join(output_dir, "{}.pkl".format(i)), "wb") as fp:
            cPickle.dump(imdb_boxes, fp, cPickle.HIGHEST_PROTOCOL)
        _t.toc()
        print 'im_proposals: {:d}/{:d} {:.3f}s' \
              .format(i + 1, imdb.num_images, _t.average_time)
        if 0:
            dets = np.hstack((imdb_boxes, scores))
            # from IPython import embed; embed()
            _vis_proposals(im, dets[:3, :], thresh=0.9)
            plt.show()
train_svms.py 文件源码 项目:py-faster-rcnn-resnet-imagenet 作者: tianzhi0549 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def _get_feature_scale(self, num_images=100):
        TARGET_NORM = 20.0 # Magic value from traditional R-CNN
        _t = Timer()
        roidb = self.imdb.roidb
        total_norm = 0.0
        count = 0.0
        inds = npr.choice(xrange(self.imdb.num_images), size=num_images,
                          replace=False)
        for i_, i in enumerate(inds):
            im = cv2.imread(self.imdb.image_path_at(i))
            if roidb[i]['flipped']:
                im = im[:, ::-1, :]
            _t.tic()
            scores, boxes = im_detect(self.net, im, roidb[i]['boxes'])
            _t.toc()
            feat = self.net.blobs[self.layer].data
            total_norm += np.sqrt((feat ** 2).sum(axis=1)).sum()
            count += feat.shape[0]
            print('{}/{}: avg feature norm: {:.3f}'.format(i_ + 1, num_images,
                                                           total_norm / count))

        return TARGET_NORM * 1.0 / (total_norm / count)
train.py 文件源码 项目:RON 作者: taokong 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def train_model(self, max_iters):
        """Network training loop."""
        last_snapshot_iter = -1
        timer = Timer()
        while self.solver.iter < max_iters:
            # Make one SGD update
            timer.tic()
            self.solver.step(1)
            timer.toc()
            if self.solver.iter % (10 * self.solver_param.display) == 0:
                print 'speed: {:.3f}s / iter'.format(timer.average_time)

            if self.solver.iter % cfg.TRAIN.SNAPSHOT_ITERS == 0:
                last_snapshot_iter = self.solver.iter
                self.snapshot()

        if last_snapshot_iter != self.solver.iter:
            self.snapshot()
generate.py 文件源码 项目:RON 作者: taokong 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def imdb_proposals(net, imdb):
    """Generate RPN proposals on all images in an imdb."""

    _t = Timer()
    imdb_boxes = [[] for _ in xrange(imdb.num_images)]
    for i in xrange(imdb.num_images):
        im = cv2.imread(imdb.image_path_at(i))
        _t.tic()
        imdb_boxes[i], scores = im_proposals(net, im)
        _t.toc()
        print 'im_proposals: {:d}/{:d} {:.3f}s' \
              .format(i + 1, imdb.num_images, _t.average_time)
        if 0:
            dets = np.hstack((imdb_boxes[i], scores))
            # from IPython import embed; embed()
            _vis_proposals(im, dets[:3, :], thresh=0.9)
            plt.show()

    return imdb_boxes
train.py 文件源码 项目:face-py-faster-rcnn 作者: playerkk 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def train_model(self, max_iters):
        """Network training loop."""
        last_snapshot_iter = -1
        timer = Timer()
        model_paths = []
        while self.solver.iter < max_iters:
            # Make one SGD update
            timer.tic()
            self.solver.step(1)
            timer.toc()
            if self.solver.iter % (10 * self.solver_param.display) == 0:
                print 'speed: {:.3f}s / iter'.format(timer.average_time)

            if self.solver.iter % cfg.TRAIN.SNAPSHOT_ITERS == 0:
                last_snapshot_iter = self.solver.iter
                model_paths.append(self.snapshot())

        if last_snapshot_iter != self.solver.iter:
            model_paths.append(self.snapshot())
        return model_paths
generate.py 文件源码 项目:face-py-faster-rcnn 作者: playerkk 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def imdb_proposals(net, imdb):
    """Generate RPN proposals on all images in an imdb."""

    _t = Timer()
    imdb_boxes = [[] for _ in xrange(imdb.num_images)]
    for i in xrange(imdb.num_images):
        im = cv2.imread(imdb.image_path_at(i))
        _t.tic()
        imdb_boxes[i], scores = im_proposals(net, im)
        _t.toc()
        print 'im_proposals: {:d}/{:d} {:.3f}s' \
              .format(i + 1, imdb.num_images, _t.average_time)
        if 0:
            dets = np.hstack((imdb_boxes[i], scores))
            # from IPython import embed; embed()
            _vis_proposals(im, dets[:3, :], thresh=0.9)
            plt.show()

    return imdb_boxes
train_svms.py 文件源码 项目:face-py-faster-rcnn 作者: playerkk 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def _get_feature_scale(self, num_images=100):
        TARGET_NORM = 20.0 # Magic value from traditional R-CNN
        _t = Timer()
        roidb = self.imdb.roidb
        total_norm = 0.0
        count = 0.0
        inds = npr.choice(xrange(self.imdb.num_images), size=num_images,
                          replace=False)
        for i_, i in enumerate(inds):
            im = cv2.imread(self.imdb.image_path_at(i))
            if roidb[i]['flipped']:
                im = im[:, ::-1, :]
            _t.tic()
            scores, boxes = im_detect(self.net, im, roidb[i]['boxes'])
            _t.toc()
            feat = self.net.blobs[self.layer].data
            total_norm += np.sqrt((feat ** 2).sum(axis=1)).sum()
            count += feat.shape[0]
            print('{}/{}: avg feature norm: {:.3f}'.format(i_ + 1, num_images,
                                                           total_norm / count))

        return TARGET_NORM * 1.0 / (total_norm / count)
generate.py 文件源码 项目:Automatic_Group_Photography_Enhancement 作者: Yuliang-Zou 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def imdb_proposals(net, imdb):
    """Generate RPN proposals on all images in an imdb."""

    _t = Timer()
    imdb_boxes = [[] for _ in xrange(imdb.num_images)]
    for i in xrange(imdb.num_images):
        im = cv2.imread(imdb.image_path_at(i))
        _t.tic()
        imdb_boxes[i], scores = im_proposals(net, im)
        _t.toc()
        print 'im_proposals: {:d}/{:d} {:.3f}s' \
              .format(i + 1, imdb.num_images, _t.average_time)
        if 0:
            dets = np.hstack((imdb_boxes[i], scores))
            # from IPython import embed; embed()
            _vis_proposals(im, dets[:3, :], thresh=0.9)
            plt.show()

    return imdb_boxes
generate.py 文件源码 项目:Automatic_Group_Photography_Enhancement 作者: Yuliang-Zou 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def imdb_proposals_det(net, imdb):
    """Generate RPN proposals on all images in an imdb."""

    _t = Timer()
    imdb_boxes = [[] for _ in xrange(imdb.num_images)]
    for i in xrange(imdb.num_images):
        im = cv2.imread(imdb.image_path_at(i))
        _t.tic()
        boxes, scores = im_proposals(net, im)
        _t.toc()
        print 'im_proposals: {:d}/{:d} {:.3f}s' \
              .format(i + 1, imdb.num_images, _t.average_time)
        dets = np.hstack((boxes, scores))
        imdb_boxes[i] = dets

        if 0:            
            # from IPython import embed; embed()
            _vis_proposals(im, dets[:3, :], thresh=0.9)
            plt.show()

    return imdb_boxes
train.py 文件源码 项目:deep-fashion 作者: zuowang 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def train_model(self, max_iters):
        """Network training loop."""
        last_snapshot_iter = -1
        timer = Timer()
        model_paths = []
        while self.solver.iter < max_iters:
            # Make one SGD update
            timer.tic()
            self.solver.step(1)
            timer.toc()
            if self.solver.iter % (10 * self.solver_param.display) == 0:
                print 'speed: {:.3f}s / iter'.format(timer.average_time)

            if self.solver.iter % cfg.TRAIN.SNAPSHOT_ITERS == 0:
                last_snapshot_iter = self.solver.iter
                model_paths.append(self.snapshot())

        if last_snapshot_iter != self.solver.iter:
            model_paths.append(self.snapshot())
        return model_paths
generate.py 文件源码 项目:deep-fashion 作者: zuowang 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def imdb_proposals(net, imdb):
    """Generate RPN proposals on all images in an imdb."""

    _t = Timer()
    imdb_boxes = [[] for _ in xrange(imdb.num_images)]
    for i in xrange(imdb.num_images):
        im = cv2.imread(imdb.image_path_at(i))
        _t.tic()
        imdb_boxes[i], scores = im_proposals(net, im)
        _t.toc()
        print 'im_proposals: {:d}/{:d} {:.3f}s' \
              .format(i + 1, imdb.num_images, _t.average_time)
        if 0:
            dets = np.hstack((imdb_boxes[i], scores))
            # from IPython import embed; embed()
            _vis_proposals(im, dets[:3, :], thresh=0.9)
            plt.show()

    return imdb_boxes
train_svms.py 文件源码 项目:deep-fashion 作者: zuowang 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _get_feature_scale(self, num_images=100):
        TARGET_NORM = 20.0 # Magic value from traditional R-CNN
        _t = Timer()
        roidb = self.imdb.roidb
        total_norm = 0.0
        count = 0.0
        inds = npr.choice(xrange(self.imdb.num_images), size=num_images,
                          replace=False)
        for i_, i in enumerate(inds):
            im = cv2.imread(self.imdb.image_path_at(i))
            if roidb[i]['flipped']:
                im = im[:, ::-1, :]
            _t.tic()
            scores, boxes = im_detect(self.net, im, roidb[i]['boxes'])
            _t.toc()
            feat = self.net.blobs[self.layer].data
            total_norm += np.sqrt((feat ** 2).sum(axis=1)).sum()
            count += feat.shape[0]
            print('{}/{}: avg feature norm: {:.3f}'.format(i_ + 1, num_images,
                                                           total_norm / count))

        return TARGET_NORM * 1.0 / (total_norm / count)
train.py 文件源码 项目:RPN 作者: hfut721 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def train_model(self, max_iters):
        """Network training loop."""
        last_snapshot_iter = -1
        timer = Timer()
        model_paths = []
        while self.solver.iter < max_iters:
            # Make one SGD update
            timer.tic()
            self.solver.step(1)
            timer.toc()
            if self.solver.iter % (10 * self.solver_param.display) == 0:
                print 'speed: {:.3f}s / iter'.format(timer.average_time)

            if self.solver.iter % cfg.TRAIN.SNAPSHOT_ITERS == 0:
                last_snapshot_iter = self.solver.iter
                model_paths.append(self.snapshot())

        if last_snapshot_iter != self.solver.iter:
            model_paths.append(self.snapshot())
        return model_paths
generate.py 文件源码 项目:RPN 作者: hfut721 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def imdb_proposals(net, imdb):
    """Generate RPN proposals on all images in an imdb."""

    _t = Timer()
    imdb_boxes = [[] for _ in xrange(imdb.num_images)]
    for i in xrange(imdb.num_images):
        im = cv2.imread(imdb.image_path_at(i))
        _t.tic()
        imdb_boxes[i], scores = im_proposals(net, im)
        _t.toc()
        print 'im_proposals: {:d}/{:d} {:.3f}s' \
              .format(i + 1, imdb.num_images, _t.average_time)
        if 0:
            dets = np.hstack((imdb_boxes[i], scores))
            # from IPython import embed; embed()
            _vis_proposals(im, dets[:3, :], thresh=0.9)
            plt.show()

    return imdb_boxes
train_svms.py 文件源码 项目:RPN 作者: hfut721 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def _get_feature_scale(self, num_images=100):
        TARGET_NORM = 20.0 # Magic value from traditional R-CNN
        _t = Timer()
        roidb = self.imdb.roidb
        total_norm = 0.0
        count = 0.0
        inds = npr.choice(xrange(self.imdb.num_images), size=num_images,
                          replace=False)
        for i_, i in enumerate(inds):
            im = cv2.imread(self.imdb.image_path_at(i))
            if roidb[i]['flipped']:
                im = im[:, ::-1, :]
            _t.tic()
            scores, boxes = im_detect(self.net, im, roidb[i]['boxes'])
            _t.toc()
            feat = self.net.blobs[self.layer].data
            total_norm += np.sqrt((feat ** 2).sum(axis=1)).sum()
            count += feat.shape[0]
            print('{}/{}: avg feature norm: {:.3f}'.format(i_ + 1, num_images,
                                                           total_norm / count))

        return TARGET_NORM * 1.0 / (total_norm / count)


问题


面经


文章

微信
公众号

扫码关注公众号