python类im_list_to_blob()的实例源码

minibatch.py 文件源码 项目:HandDetection 作者: YunqiuXu 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
  """Builds an input blob from the images in the roidb at the specified
  scales.
  """
  num_images = len(roidb)
  processed_ims = []
  im_scales = []
  for i in range(num_images):
    im = cv2.imread(roidb[i]['image'])
    if roidb[i]['flipped']:
      im = im[:, ::-1, :]
    target_size = cfg.TRAIN.SCALES[scale_inds[i]]
    im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                    cfg.TRAIN.MAX_SIZE)
    im_scales.append(im_scale)
    processed_ims.append(im)

  # Create a blob to hold the input images
  blob = im_list_to_blob(processed_ims)

  return blob, im_scales
minibatch.py 文件源码 项目:dpl 作者: ppengtang 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    im_shapes = np.zeros((0, 2), dtype=np.float32)
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale, im_shape = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size)
        im_scales.append(im_scale)
        processed_ims.append(im)
        im_shapes = np.vstack((im_shapes, im_shape))

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales, im_shapes
minibatch.py 文件源码 项目:adversarial-frcnn 作者: xiaolonw 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
minibatch_backup.py 文件源码 项目:fast-rcnn-distillation 作者: xiaolonw 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds, data_i):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'][data_i])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
minibatch.py 文件源码 项目:faster-rcnn-resnet 作者: Eniac-Xie 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
minibatch.py 文件源码 项目:py-faster-rcnn-tk1 作者: joeking11829 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
data_layer.py 文件源码 项目:image-classifier 作者: gustavkkk 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _get_image_blob(self, sample):
        im_blob = []
        labels_blob = []
        for i in range(self.batch_size):
        ImgAsColr = 0
        if cfg.CHANNEL_SIZE == 3:
           ImgAsColr = 1
            im = cv2.imread(cfg.IMAGEPATH + sample[i]['picname'],ImgAsColr)
            if sample[i]['flipped']:
                im = im[:, ::-1, :]
            personname = sample[i]['picname'].split('/')[0]
            labels_blob.append(self._data._sample_label[personname])
            im = prep_im_for_blob(im)

            im_blob.append(im)

        # Create a blob to hold the input images
        blob = im_list_to_blob(im_blob)
        return blob, labels_blob
minibatch.py 文件源码 项目:py-faster-rcnn-resnet-imagenet 作者: tianzhi0549 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    global_vars.image_files = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        global_vars.image_files.append(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
test.py 文件源码 项目:RON 作者: taokong 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _get_image_blob(ims, target_size):
    """Converts an image into a network input.

    Arguments:
        im (ndarray): a color image in BGR order

    Returns:
        blob (ndarray): a data blob holding an image pyramid
        im_infos(ndarray): a data blob holding input size pyramid
    """
    processed_ims = []
    for im in ims:
        im = im.astype(np.float32, copy = False)
        im = im - cfg.PIXEL_MEANS
        im_shape = im.shape[0:2]
        im = cv2.resize(im, None, None, fx = float(target_size) / im_shape[1], \
            fy = float(target_size) / im_shape[0], interpolation = cv2.INTER_LINEAR)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob
minibatch.py 文件源码 项目:face-py-faster-rcnn 作者: playerkk 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
minibatch2.py 文件源码 项目:Automatic_Group_Photography_Enhancement 作者: Yuliang-Zou 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]

        im_orig = im.astype(np.float32, copy=True)
        im_orig -= cfg.PIXEL_MEANS

        im_scale = cfg.TRAIN.SCALES_BASE[scale_inds[i]]
        im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR)

        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
minibatch2.py 文件源码 项目:Automatic_Group_Photography_Enhancement 作者: Yuliang-Zou 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _get_image_blob_multiscale(roidb):
    """Builds an input blob from the images in the roidb at multiscales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    scales = cfg.TRAIN.SCALES_BASE
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]

        im_orig = im.astype(np.float32, copy=True)
        im_orig -= cfg.PIXEL_MEANS

        for im_scale in scales:
            im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR)
            im_scales.append(im_scale)
            processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
minibatch.py 文件源码 项目:Automatic_Group_Photography_Enhancement 作者: Yuliang-Zou 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
MSDN_base.py 文件源码 项目:MSDN 作者: yikang-li 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def get_image_blob_noscale(self, im):
        im_orig = im.astype(np.float32, copy=True)
        im_orig -= self.PIXEL_MEANS
        im_shape = im_orig.shape
        im_size_min = np.min(im_shape[0:2])
        im_size_max = np.max(im_shape[0:2])

        processed_ims = []
        im_scale_factors = []

        target_size = self.SCALES[0]
        im_scale = float(target_size) / float(im_size_min)
        # Prevent the biggest axis from being more than MAX_SIZE
        if np.round(im_scale * im_size_max) > self.MAX_SIZE:
            im_scale = float(self.MAX_SIZE) / float(im_size_max)
        im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale,
                        interpolation=cv2.INTER_LINEAR)
        im_scale_factors.append(im_scale)
        processed_ims.append(im)

        blob = im_list_to_blob(processed_ims)

        return blob, np.array(im_scale_factors)
minibatch.py 文件源码 项目:deep-fashion 作者: zuowang 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
minibatch.py 文件源码 项目:RPN 作者: hfut721 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
minibatch.py 文件源码 项目:oicr 作者: ppengtang 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    im_shapes = np.zeros((0, 2), dtype=np.float32)
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale, im_shape = prep_im_for_blob(im, cfg.PIXEL_MEANS, 
                                                  target_size, 
                                                  cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)
        im_shapes = np.vstack((im_shapes, im_shape))

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales, im_shapes
minibatch2.py 文件源码 项目:Faster-RCNN_TF 作者: smallcorgi 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]

        im_orig = im.astype(np.float32, copy=True)
        im_orig -= cfg.PIXEL_MEANS

        im_scale = cfg.TRAIN.SCALES_BASE[scale_inds[i]]
        im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR)

        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
minibatch2.py 文件源码 项目:Faster-RCNN_TF 作者: smallcorgi 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _get_image_blob_multiscale(roidb):
    """Builds an input blob from the images in the roidb at multiscales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    scales = cfg.TRAIN.SCALES_BASE
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]

        im_orig = im.astype(np.float32, copy=True)
        im_orig -= cfg.PIXEL_MEANS

        for im_scale in scales:
            im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR)
            im_scales.append(im_scale)
            processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
minibatch.py 文件源码 项目:Faster-RCNN_TF 作者: smallcorgi 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
minibatch.py 文件源码 项目:tf-faster-rcnn 作者: endernewton 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
  """Builds an input blob from the images in the roidb at the specified
  scales.
  """
  num_images = len(roidb)
  processed_ims = []
  im_scales = []
  for i in range(num_images):
    im = cv2.imread(roidb[i]['image'])
    if roidb[i]['flipped']:
      im = im[:, ::-1, :]
    target_size = cfg.TRAIN.SCALES[scale_inds[i]]
    im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                    cfg.TRAIN.MAX_SIZE)
    im_scales.append(im_scale)
    processed_ims.append(im)

  # Create a blob to hold the input images
  blob = im_list_to_blob(processed_ims)

  return blob, im_scales
minibatch.py 文件源码 项目:TattDL 作者: z-harry-sun 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
minibatch.py 文件源码 项目:CRAFT 作者: byangderek 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
minibatch.py 文件源码 项目:CRAFT 作者: byangderek 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
data_layer.py 文件源码 项目:triplet 作者: hizhangp 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _get_image_blob(self, sample):
        im_blob = []
        labels_blob = []
        for i in range(self.batch_size):
            im = cv2.imread(cfg.IMAGEPATH + sample[i]['picname'])
            if sample[i]['flipped']:
                im = im[:, ::-1, :]
            personname = sample[i]['picname'].split('/')[0]
            labels_blob.append(self._data._sample_label[personname])
            im = prep_im_for_blob(im)

            im_blob.append(im)

        # Create a blob to hold the input images
        blob = im_list_to_blob(im_blob)
        return blob, labels_blob
minibatch.py 文件源码 项目:faster_rcnn_logo 作者: romyny 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
minibatch.py 文件源码 项目:Faster_RCNN_Training_Toolkit 作者: VerseChow 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
minibatch.py 文件源码 项目:KITTI-detection-OHEM 作者: manutdzou 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
minibatch.py 文件源码 项目:KITTI-detection-OHEM 作者: manutdzou 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
minibatch2.py 文件源码 项目:FastRcnnDetect 作者: karthkk 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]

        im_orig = im.astype(np.float32, copy=True)
        im_orig -= cfg.PIXEL_MEANS

        im_scale = cfg.TRAIN.SCALES_BASE[scale_inds[i]]
        im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR)

        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales


问题


面经


文章

微信
公众号

扫码关注公众号