python类raiseNotDefined()的实例源码

learningAgents.py 文件源码 项目:Reinforcement-Learning 作者: victorgrego 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def update(self, state, action, nextState, reward):
    """
        This class will call this function, which you write, after
        observing a transition and reward
    """
    util.raiseNotDefined()

  ####################################
  #    Read These Functions          #  
  ####################################
qlearningAgents.py 文件源码 项目:Reinforcement-Learning 作者: victorgrego 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def getQValue(self, state, action):
    """
      Should return Q(state,action) = w * featureVector
      where * is the dotProduct operator
    """
    "*** YOUR CODE HERE ***"
    util.raiseNotDefined()
qlearningAgents.py 文件源码 项目:Reinforcement-Learning 作者: victorgrego 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def update(self, state, action, nextState, reward):
    """
       Should update your weights based on transition  
    """
    "*** YOUR CODE HERE ***"
    util.raiseNotDefined()
ghostAgents.py 文件源码 项目:Reinforcement-Learning 作者: victorgrego 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def getDistribution(self, state):
    "Returns a Counter encoding a distribution over actions from the provided state."
    util.raiseNotDefined()
search.py 文件源码 项目:AI-PacMan-Projects 作者: deepeshmittal 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def getStartState(self):
        """
        Returns the start state for the search problem.
        """
        util.raiseNotDefined()
search.py 文件源码 项目:AI-PacMan-Projects 作者: deepeshmittal 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def isGoalState(self, state):
        """
          state: Search state

        Returns True if and only if the state is a valid goal state.
        """
        util.raiseNotDefined()
search.py 文件源码 项目:AI-PacMan-Projects 作者: deepeshmittal 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def getSuccessors(self, state):
        """
          state: Search state

        For a given state, this should return a list of triples, (successor,
        action, stepCost), where 'successor' is a successor to the current
        state, 'action' is the action required to get there, and 'stepCost' is
        the incremental cost of expanding to that successor.
        """
        util.raiseNotDefined()
search.py 文件源码 项目:AI-PacMan-Projects 作者: deepeshmittal 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def getCostOfActions(self, actions):
        """
         actions: A list of actions to take

        This method returns the total cost of a particular sequence of actions.
        The sequence must be composed of legal moves.
        """
        util.raiseNotDefined()
search.py 文件源码 项目:AI-PacMan-Projects 作者: deepeshmittal 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def getStartState(self):
        """
        Returns the start state for the search problem.
        """
        util.raiseNotDefined()
search.py 文件源码 项目:AI-PacMan-Projects 作者: deepeshmittal 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def getSuccessors(self, state):
        """
          state: Search state

        For a given state, this should return a list of triples, (successor,
        action, stepCost), where 'successor' is a successor to the current
        state, 'action' is the action required to get there, and 'stepCost' is
        the incremental cost of expanding to that successor.
        """
        util.raiseNotDefined()
search.py 文件源码 项目:AI-PacMan-Projects 作者: deepeshmittal 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def getCostOfActions(self, actions):
        """
         actions: A list of actions to take

        This method returns the total cost of a particular sequence of actions.
        The sequence must be composed of legal moves.
        """
        util.raiseNotDefined()
dataClassifier.py 文件源码 项目:AI-PacMan-Projects 作者: deepeshmittal 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def enhancedPacmanFeatures(state, action):
    """
    For each state, this function is called with each legal action.
    It should return a counter with { <feature name> : <feature value>, ... }
    """
    features = util.Counter()
    "*** YOUR CODE HERE ***"
    util.raiseNotDefined()
    return features
search.py 文件源码 项目:cs188_tbf 作者: loren-jiang 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def getStartState(self):
        """
        Returns the start state for the search problem.
        """
        util.raiseNotDefined()
search.py 文件源码 项目:cs188_tbf 作者: loren-jiang 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def isGoalState(self, state):
        """
          state: Search state

        Returns True if and only if the state is a valid goal state.
        """
        util.raiseNotDefined()
search.py 文件源码 项目:cs188_tbf 作者: loren-jiang 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def getSuccessors(self, state):
        """
          state: Search state

        For a given state, this should return a list of triples, (successor,
        action, stepCost), where 'successor' is a successor to the current
        state, 'action' is the action required to get there, and 'stepCost' is
        the incremental cost of expanding to that successor.
        """
        util.raiseNotDefined()
search.py 文件源码 项目:cs188_tbf 作者: loren-jiang 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def getCostOfActions(self, actions):
        """
         actions: A list of actions to take

        This method returns the total cost of a particular sequence of actions.
        The sequence must be composed of legal moves.
        """
        util.raiseNotDefined()
search.py 文件源码 项目:cs188_tbf 作者: loren-jiang 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def uniformCostSearch(problem):
    """Search the node of least total cost first."""
    "*** YOUR CODE HERE ***"
    startState = problem.getStartState()
    visited = set()
    actions = []
    fringe = util.PriorityQueue()
    fringe.push((startState, None, None, actions), 0)

    while not fringe.isEmpty():
        currPath = fringe.pop()
        currState = currPath[0]
        action = currPath[1]
        stepCost = currPath[2]
        actions = currPath[3]
        if problem.isGoalState(currState):
            return actions
        if not currState in visited:
            visited.add(currState)
            paths = problem.getSuccessors(currState)
            for path in paths:
                if not path[0] in visited:
                    newActions = list(actions)
                    newActions.append(path[1])
                    fringe.push((path[0],path[1],path[2],newActions), problem.getCostOfActions(newActions))
    util.raiseNotDefined()
pacard.py 文件源码 项目:AIclass 作者: mttk 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def getStartState(self):
        """
        Returns the start state for the search problem.
        """
        util.raiseNotDefined()
pacard.py 文件源码 项目:AIclass 作者: mttk 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def isGoalState(self, state):
        """
          state: Search state

        Returns True if and only if the state is a valid goal state.
        """
        util.raiseNotDefined()
pacard.py 文件源码 项目:AIclass 作者: mttk 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def getSuccessors(self, state):
        """
        state: Search state

        For a given state, this should return a list of triples, (successor,
        action, stepCost), where 'successor' is a successor to the current
        state, 'action' is the action required to get there, and 'stepCost' is
        the incremental cost of expanding to that successor.
        """
        util.raiseNotDefined()


问题


面经


文章

微信
公众号

扫码关注公众号