def canKill( pacmanPosition, ghostPosition ):
return manhattanDistance( ghostPosition, pacmanPosition ) <= COLLISION_TOLERANCE
python类manhattanDistance()的实例源码
def getFurthestCorner(self, pacPos):
poses = [(1,1), (1, self.height - 2), (self.width - 2, 1), (self.width - 2, self.height - 2)]
dist, pos = max([(manhattanDistance(p, pacPos), p) for p in poses])
return pos
def getDistribution( self, state ):
# Read variables from state
ghostState = state.getGhostState( self.index )
legalActions = state.getLegalActions( self.index )
pos = state.getGhostPosition( self.index )
isScared = ghostState.scaredTimer > 0
speed = 1
if isScared: speed = 0.5
actionVectors = [Actions.directionToVector( a, speed ) for a in legalActions]
newPositions = [( pos[0]+a[0], pos[1]+a[1] ) for a in actionVectors]
pacmanPosition = state.getPacmanPosition()
# Select best actions given the state
distancesToPacman = [manhattanDistance( pos, pacmanPosition ) for pos in newPositions]
if isScared:
bestScore = max( distancesToPacman )
bestProb = self.prob_scaredFlee
else:
bestScore = min( distancesToPacman )
bestProb = self.prob_attack
bestActions = [action for action, distance in zip( legalActions, distancesToPacman ) if distance == bestScore]
# Construct distribution
dist = util.Counter()
for a in bestActions: dist[a] = bestProb / len(bestActions)
for a in legalActions: dist[a] += ( 1-bestProb ) / len(legalActions)
dist.normalize()
return dist
def canKill( pacmanPosition, ghostPosition ):
return manhattanDistance( ghostPosition, pacmanPosition ) <= COLLISION_TOLERANCE
def getFurthestCorner(self, pacPos):
poses = [(1,1), (1, self.height - 2), (self.width - 2, 1), (self.width - 2, self.height - 2)]
dist, pos = max([(manhattanDistance(p, pacPos), p) for p in poses])
return pos
def getDistribution( self, state ):
# Read variables from state
ghostState = state.getGhostState( self.index )
legalActions = state.getLegalActions( self.index )
pos = state.getGhostPosition( self.index )
isScared = ghostState.scaredTimer > 0
speed = 1
if isScared: speed = 0.5
actionVectors = [Actions.directionToVector( a, speed ) for a in legalActions]
newPositions = [( pos[0]+a[0], pos[1]+a[1] ) for a in actionVectors]
pacmanPosition = state.getPacmanPosition()
# Select best actions given the state
distancesToPacman = [manhattanDistance( pos, pacmanPosition ) for pos in newPositions]
if isScared:
bestScore = max( distancesToPacman )
bestProb = self.prob_scaredFlee
else:
bestScore = min( distancesToPacman )
bestProb = self.prob_attack
bestActions = [action for action, distance in zip( legalActions, distancesToPacman ) if distance == bestScore]
# Construct distribution
dist = util.Counter()
for a in bestActions: dist[a] = bestProb / len(bestActions)
for a in legalActions: dist[a] += ( 1-bestProb ) / len(legalActions)
dist.normalize()
return dist
def canKill( pacmanPosition, ghostPosition ):
return manhattanDistance( ghostPosition, pacmanPosition ) <= COLLISION_TOLERANCE
def getFurthestCorner(self, pacPos):
poses = [(1,1), (1, self.height - 2), (self.width - 2, 1), (self.width - 2, self.height - 2)]
dist, pos = max([(manhattanDistance(p, pacPos), p) for p in poses])
return pos
def getDistribution( self, state ):
# Read variables from state
ghostState = state.getGhostState( self.index )
legalActions = state.getLegalActions( self.index )
pos = state.getGhostPosition( self.index )
isScared = ghostState.scaredTimer > 0
speed = 1
if isScared: speed = 0.5
actionVectors = [Actions.directionToVector( a, speed ) for a in legalActions]
newPositions = [( pos[0]+a[0], pos[1]+a[1] ) for a in actionVectors]
pacmanPosition = state.getPacmanPosition()
# Select best actions given the state
distancesToPacman = [manhattanDistance( pos, pacmanPosition ) for pos in newPositions]
if isScared:
bestScore = max( distancesToPacman )
bestProb = self.prob_scaredFlee
else:
bestScore = min( distancesToPacman )
bestProb = self.prob_attack
bestActions = [action for action, distance in zip( legalActions, distancesToPacman ) if distance == bestScore]
# Construct distribution
dist = util.Counter()
for a in bestActions: dist[a] = bestProb / len(bestActions)
for a in legalActions: dist[a] += ( 1-bestProb ) / len(legalActions)
dist.normalize()
return dist
def canKill( pacmanPosition, ghostPosition ):
return manhattanDistance( ghostPosition, pacmanPosition ) <= COLLISION_TOLERANCE
def getFurthestCorner(self, pacPos):
poses = [(1,1), (1, self.height - 2), (self.width - 2, 1), (self.width - 2, self.height - 2)]
dist, pos = max([(manhattanDistance(p, pacPos), p) for p in poses])
return pos
def isWumpusClose(self, state):
"""
You SHOULD use this function in your implementation. This function checks
if the stench of the wumpus can be sensed from the square you are at.
"""
return util.manhattanDistance(self.wumpus, state) == 1
def isPoisonCapsuleClose(self, state):
"""
You SHOULD use this function in your implementation. This function checks
if the poison from the pills can be sensed from the square you are at.
"""
return any([util.manhattanDistance(capsule, state) == 1 for capsule in self.capsules])
def getDistribution( self, state ):
# Read variables from state
ghostState = state.getGhostState( self.index )
legalActions = state.getLegalActions( self.index )
pos = state.getGhostPosition( self.index )
isScared = ghostState.scaredTimer > 0
speed = 1
if isScared: speed = 0.5
actionVectors = [Actions.directionToVector( a, speed ) for a in legalActions]
newPositions = [( pos[0]+a[0], pos[1]+a[1] ) for a in actionVectors]
pacmanPosition = state.getPacmanPosition()
# Select best actions given the state
distancesToPacman = [manhattanDistance( pos, pacmanPosition ) for pos in newPositions]
if isScared:
bestScore = max( distancesToPacman )
bestProb = self.prob_scaredFlee
else:
bestScore = min( distancesToPacman )
bestProb = self.prob_attack
bestActions = [action for action, distance in zip( legalActions, distancesToPacman ) if distance == bestScore]
# Construct distribution
dist = util.Counter()
for a in bestActions: dist[a] = bestProb / len(bestActions)
for a in legalActions: dist[a] += ( 1-bestProb ) / len(legalActions)
dist.normalize()
return dist
def canKill( pacmanPosition, ghostPosition ):
return manhattanDistance( ghostPosition, pacmanPosition ) <= COLLISION_TOLERANCE
def getFurthestCorner(self, pacPos):
poses = [(1,1), (1, self.height - 2), (self.width - 2, 1), (self.width - 2, self.height - 2)]
dist, pos = max([(manhattanDistance(p, pacPos), p) for p in poses])
return pos
def getDistribution( self, state ):
# Read variables from state
ghostState = state.getGhostState( self.index )
legalActions = state.getLegalActions( self.index )
pos = state.getGhostPosition( self.index )
isScared = ghostState.scaredTimer > 0
speed = 1
if isScared: speed = 0.5
actionVectors = [Actions.directionToVector( a, speed ) for a in legalActions]
newPositions = [( pos[0]+a[0], pos[1]+a[1] ) for a in actionVectors]
pacmanPosition = state.getPacmanPosition()
# Select best actions given the state
distancesToPacman = [manhattanDistance( pos, pacmanPosition ) for pos in newPositions]
if isScared:
bestScore = max( distancesToPacman )
bestProb = self.prob_scaredFlee
else:
bestScore = min( distancesToPacman )
bestProb = self.prob_attack
bestActions = [action for action, distance in zip( legalActions, distancesToPacman ) if distance == bestScore]
# Construct distribution
dist = util.Counter()
for a in bestActions: dist[a] = bestProb / len(bestActions)
for a in legalActions: dist[a] += ( 1-bestProb ) / len(legalActions)
dist.normalize()
return dist
def canKill( pacmanPosition, ghostPosition ):
return manhattanDistance( ghostPosition, pacmanPosition ) <= COLLISION_TOLERANCE
def getFurthestCorner(self, pacPos):
poses = [(1,1), (1, self.height - 2), (self.width - 2, 1), (self.width - 2, self.height - 2)]
dist, pos = max([(manhattanDistance(p, pacPos), p) for p in poses])
return pos
def getDistribution( self, state ):
# Read variables from state
ghostState = state.getGhostState( self.index )
legalActions = state.getLegalActions( self.index )
pos = state.getGhostPosition( self.index )
isScared = ghostState.scaredTimer > 0
speed = 1
if isScared: speed = 0.5
actionVectors = [Actions.directionToVector( a, speed ) for a in legalActions]
newPositions = [( pos[0]+a[0], pos[1]+a[1] ) for a in actionVectors]
pacmanPosition = state.getPacmanPosition()
# Select best actions given the state
distancesToPacman = [manhattanDistance( pos, pacmanPosition ) for pos in newPositions]
if isScared:
bestScore = max( distancesToPacman )
bestProb = self.prob_scaredFlee
else:
bestScore = min( distancesToPacman )
bestProb = self.prob_attack
bestActions = [action for action, distance in zip( legalActions, distancesToPacman ) if distance == bestScore]
# Construct distribution
dist = util.Counter()
for a in bestActions: dist[a] = bestProb / len(bestActions)
for a in legalActions: dist[a] += ( 1-bestProb ) / len(legalActions)
dist.normalize()
return dist