def applyAction( state, action ):
"""
Edits the state to reflect the results of the action.
"""
legal = PacmanRules.getLegalActions( state )
if action not in legal:
raise Exception("Illegal action " + str(action))
pacmanState = state.data.agentStates[0]
# Update Configuration
vector = Actions.directionToVector( action, PacmanRules.PACMAN_SPEED )
pacmanState.configuration = pacmanState.configuration.generateSuccessor( vector )
# Eat
next = pacmanState.configuration.getPosition()
nearest = nearestPoint( next )
if manhattanDistance( nearest, next ) <= 0.5 :
# Remove food
PacmanRules.consume( nearest, state )
python类manhattanDistance()的实例源码
def applyAction( state, action ):
"""
Edits the state to reflect the results of the action.
"""
legal = PacmanRules.getLegalActions( state )
if action not in legal:
raise Exception("Illegal action " + str(action))
pacmanState = state.data.agentStates[0]
# Update Configuration
vector = Actions.directionToVector( action, PacmanRules.PACMAN_SPEED )
pacmanState.configuration = pacmanState.configuration.generateSuccessor( vector )
# Eat
next = pacmanState.configuration.getPosition()
nearest = nearestPoint( next )
if manhattanDistance( nearest, next ) <= 0.5 :
# Remove food
PacmanRules.consume( nearest, state )
def applyAction( state, action ):
"""
Edits the state to reflect the results of the action.
"""
legal = PacmanRules.getLegalActions( state )
if action not in legal:
raise Exception("Illegal action " + str(action))
pacmanState = state.data.agentStates[0]
# Update Configuration
vector = Actions.directionToVector( action, PacmanRules.PACMAN_SPEED )
pacmanState.configuration = pacmanState.configuration.generateSuccessor( vector )
# Eat
next = pacmanState.configuration.getPosition()
nearest = nearestPoint( next )
if manhattanDistance( nearest, next ) <= 0.5 :
# Remove food
PacmanRules.consume( nearest, state )
def applyAction( state, action ):
"""
Edits the state to reflect the results of the action.
"""
legal = PacmanRules.getLegalActions( state )
if action not in legal:
raise Exception("Illegal action " + str(action))
pacmanState = state.data.agentStates[0]
# Update Configuration
vector = Actions.directionToVector( action, PacmanRules.PACMAN_SPEED )
pacmanState.configuration = pacmanState.configuration.generateSuccessor( vector )
# Eat
next = pacmanState.configuration.getPosition()
nearest = nearestPoint( next )
if manhattanDistance( nearest, next ) <= 0.5 :
# Remove food
PacmanRules.consume( nearest, state )
def applyAction( state, action ):
"""
Edits the state to reflect the results of the action.
"""
legal = PacmanRules.getLegalActions( state )
if action not in legal:
raise Exception("Illegal action " + str(action))
pacmanState = state.data.agentStates[0]
# Update Configuration
vector = Actions.directionToVector( action, PacmanRules.PACMAN_SPEED )
pacmanState.configuration = pacmanState.configuration.generateSuccessor( vector )
# Eat
next = pacmanState.configuration.getPosition()
nearest = nearestPoint( next )
if manhattanDistance( nearest, next ) <= 0.5 :
# Remove food
PacmanRules.consume( nearest, state )
def applyAction( state, action ):
"""
Edits the state to reflect the results of the action.
"""
legal = PacmanRules.getLegalActions( state )
if action not in legal:
raise Exception("Illegal action " + str(action))
pacmanState = state.data.agentStates[0]
# Update Configuration
vector = Actions.directionToVector( action, PacmanRules.PACMAN_SPEED )
pacmanState.configuration = pacmanState.configuration.generateSuccessor( vector )
# Eat
next = pacmanState.configuration.getPosition()
nearest = nearestPoint( next )
if manhattanDistance( nearest, next ) <= 0.5 :
# Remove food
PacmanRules.consume( nearest, state )
def applyAction( state, action ):
"""
Edits the state to reflect the results of the action.
"""
legal = PacmanRules.getLegalActions( state )
if action not in legal:
raise Exception("Illegal action " + str(action))
pacmanState = state.data.agentStates[0]
# Update Configuration
vector = Actions.directionToVector( action, PacmanRules.PACMAN_SPEED )
pacmanState.configuration = pacmanState.configuration.generateSuccessor( vector )
# Eat
next = pacmanState.configuration.getPosition()
nearest = nearestPoint( next )
if manhattanDistance( nearest, next ) <= 0.5 :
# Remove food
PacmanRules.consume( nearest, state )
def applyAction( state, action ):
"""
Edits the state to reflect the results of the action.
"""
legal = PacmanRules.getLegalActions( state )
if action not in legal:
raise Exception("Illegal action " + str(action))
pacmanState = state.data.agentStates[0]
# Update Configuration
vector = Actions.directionToVector( action, PacmanRules.PACMAN_SPEED )
pacmanState.configuration = pacmanState.configuration.generateSuccessor( vector )
# Eat
next = pacmanState.configuration.getPosition()
nearest = nearestPoint( next )
if manhattanDistance( nearest, next ) <= 0.5 :
# Remove food
PacmanRules.consume( nearest, state )
def applyAction( state, action ):
"""
Edits the state to reflect the results of the action.
"""
legal = PacmanRules.getLegalActions( state )
if action not in legal:
raise Exception("Illegal action " + str(action))
pacmanState = state.data.agentStates[0]
# Update Configuration
vector = Actions.directionToVector( action, PacmanRules.PACMAN_SPEED )
pacmanState.configuration = pacmanState.configuration.generateSuccessor( vector )
# Eat
next = pacmanState.configuration.getPosition()
nearest = nearestPoint( next )
if manhattanDistance( nearest, next ) <= 0.5 :
# Remove food
PacmanRules.consume( nearest, state )
def applyAction( state, action ):
"""
Edits the state to reflect the results of the action.
"""
legal = PacmanRules.getLegalActions( state )
if action not in legal:
raise Exception("Illegal action " + str(action))
pacmanState = state.data.agentStates[0]
# Update Configuration
vector = Actions.directionToVector( action, PacmanRules.PACMAN_SPEED )
pacmanState.configuration = pacmanState.configuration.generateSuccessor( vector )
# Eat
next = pacmanState.configuration.getPosition()
nearest = nearestPoint( next )
if manhattanDistance( nearest, next ) <= 0.5 :
# Remove food
PacmanRules.consume( nearest, state )
def applyAction( state, action ):
"""
Edits the state to reflect the results of the action.
"""
legal = PacmanRules.getLegalActions( state )
if action not in legal:
raise Exception("Illegal action " + str(action))
pacmanState = state.data.agentStates[0]
# Update Configuration
vector = Actions.directionToVector( action, PacmanRules.PACMAN_SPEED )
pacmanState.configuration = pacmanState.configuration.generateSuccessor( vector )
# Eat
next = pacmanState.configuration.getPosition()
nearest = nearestPoint( next )
if manhattanDistance( nearest, next ) <= 0.5 :
# Remove food
PacmanRules.consume( nearest, state )
def applyAction( state, action ):
"""
Edits the state to reflect the results of the action.
"""
legal = PacmanRules.getLegalActions( state )
if action not in legal:
raise Exception("Illegal action " + str(action))
pacmanState = state.data.agentStates[0]
# Update Configuration
vector = Actions.directionToVector( action, PacmanRules.PACMAN_SPEED )
pacmanState.configuration = pacmanState.configuration.generateSuccessor( vector )
# Eat
next = pacmanState.configuration.getPosition()
nearest = nearestPoint( next )
if manhattanDistance( nearest, next ) <= 0.5 :
# Remove food
PacmanRules.consume( nearest, state )
def applyAction( state, action ):
"""
Edits the state to reflect the results of the action.
"""
legal = PacmanRules.getLegalActions( state )
if action not in legal:
raise Exception("Illegal action " + str(action))
pacmanState = state.data.agentStates[0]
# Update Configuration
vector = Actions.directionToVector( action, PacmanRules.PACMAN_SPEED )
pacmanState.configuration = pacmanState.configuration.generateSuccessor( vector )
# Eat
next = pacmanState.configuration.getPosition()
nearest = nearestPoint( next )
if manhattanDistance( nearest, next ) <= 0.5 :
# Remove food
PacmanRules.consume( nearest, state )
def applyAction( state, action ):
"""
Edits the state to reflect the results of the action.
"""
legal = PacmanRules.getLegalActions( state )
if action not in legal:
raise Exception("Illegal action " + str(action))
pacmanState = state.data.agentStates[0]
# Update Configuration
vector = Actions.directionToVector( action, PacmanRules.PACMAN_SPEED )
pacmanState.configuration = pacmanState.configuration.generateSuccessor( vector )
# Eat
next = pacmanState.configuration.getPosition()
nearest = nearestPoint( next )
if manhattanDistance( nearest, next ) <= 0.5 :
# Remove food
PacmanRules.consume( nearest, state )
def applyAction( state, action ):
"""
Edits the state to reflect the results of the action.
"""
legal = PacmanRules.getLegalActions( state )
if action not in legal:
raise Exception("Illegal action " + str(action))
pacmanState = state.data.agentStates[0]
# Update Configuration
vector = Actions.directionToVector( action, PacmanRules.PACMAN_SPEED )
pacmanState.configuration = pacmanState.configuration.generateSuccessor( vector )
# Eat
next = pacmanState.configuration.getPosition()
nearest = nearestPoint( next )
if manhattanDistance( nearest, next ) <= 0.5 :
# Remove food
PacmanRules.consume( nearest, state )
def applyAction( state, action ):
"""
Edits the state to reflect the results of the action.
"""
legal = PacmanRules.getLegalActions( state )
if action not in legal:
raise Exception("Illegal action " + str(action))
pacmanState = state.data.agentStates[0]
# Update Configuration
vector = Actions.directionToVector( action, PacmanRules.PACMAN_SPEED )
pacmanState.configuration = pacmanState.configuration.generateSuccessor( vector )
# Eat
next = pacmanState.configuration.getPosition()
nearest = nearestPoint( next )
if manhattanDistance( nearest, next ) <= 0.5 :
# Remove food
PacmanRules.consume( nearest, state )
def canKill( pacmanPosition, ghostPosition ):
return manhattanDistance( ghostPosition, pacmanPosition ) <= COLLISION_TOLERANCE
def getFurthestCorner(self, pacPos):
poses = [(1,1), (1, self.height - 2), (self.width - 2, 1), (self.width - 2, self.height - 2)]
dist, pos = max([(manhattanDistance(p, pacPos), p) for p in poses])
return pos
def getDistribution( self, state ):
# Read variables from state
ghostState = state.getGhostState( self.index )
legalActions = state.getLegalActions( self.index )
pos = state.getGhostPosition( self.index )
isScared = ghostState.scaredTimer > 0
speed = 1
if isScared: speed = 0.5
actionVectors = [Actions.directionToVector( a, speed ) for a in legalActions]
newPositions = [( pos[0]+a[0], pos[1]+a[1] ) for a in actionVectors]
pacmanPosition = state.getPacmanPosition()
# Select best actions given the state
distancesToPacman = [manhattanDistance( pos, pacmanPosition ) for pos in newPositions]
if isScared:
bestScore = max( distancesToPacman )
bestProb = self.prob_scaredFlee
else:
bestScore = min( distancesToPacman )
bestProb = self.prob_attack
bestActions = [action for action, distance in zip( legalActions, distancesToPacman ) if distance == bestScore]
# Construct distribution
dist = util.Counter()
for a in bestActions: dist[a] = bestProb / len(bestActions)
for a in legalActions: dist[a] += ( 1-bestProb ) / len(legalActions)
dist.normalize()
return dist
def noisyDistance(pos1, pos2):
return int(util.manhattanDistance(pos1, pos2) + random.choice(SONAR_NOISE_VALUES))
###################################################
# YOUR INTERFACE TO THE PACMAN WORLD: A GameState #
###################################################
def getAction(self, state, agentIndex):
# print len(state.data.agentStates)
neighbors = Actions.getPossibleNeighborActions(state.data.agentStates[0].getPosition(), 1.0, state.data.layout.obstacles)
#print "neighbors", neighbors
nearestPursuer = None
distanceToPursuer = 999
maxDistance = 0
maxNeighbors = []
for j in range(1, len(state.data.agentStates)):
distance = manhattanDistance(state.data.agentStates[0].getPosition(), state.data.agentStates[j].getPosition())
if distance < distanceToPursuer:
nearestPursuer = state.data.agentStates[j].getPosition()
distanceToPursuer = distance
"""
for i in range(len(neighbors)):
distance = manhattanDistance(neighbors[i], nearestPursuer)
if distance > maxDistance:
maxNeighbors = []
maxNeighbors.append(neighbors[i])
maxDistance = distance
if distance == maxDistance:
maxNeighbors.append(neighbors[i])
import random
random.shuffle(maxNeighbors)
return maxNeighbors[0]
"""
for i in range(len(neighbors)):
distance = manhattanDistance(neighbors[i], nearestPursuer)
if distance > maxDistance:
maxNeighbors = []
maxNeighbors.append(neighbors[i])
maxDistance = distance
if distance == maxDistance:
maxNeighbors.append(neighbors[i])
return maxNeighbors[0]
def canKill( pacmanPosition, ghostPosition ):
return manhattanDistance( ghostPosition, pacmanPosition ) <= COLLISION_TOLERANCE
def getFurthestCorner(self, pacPos):
poses = [(1,1), (1, self.height - 2), (self.width - 2, 1), (self.width - 2, self.height - 2)]
dist, pos = max([(manhattanDistance(p, pacPos), p) for p in poses])
return pos
def getDistribution( self, state ):
# Read variables from state
ghostState = state.getGhostState( self.index )
legalActions = state.getLegalActions( self.index )
pos = state.getGhostPosition( self.index )
isScared = ghostState.scaredTimer > 0
speed = 1
if isScared: speed = 0.5
actionVectors = [Actions.directionToVector( a, speed ) for a in legalActions]
newPositions = [( pos[0]+a[0], pos[1]+a[1] ) for a in actionVectors]
pacmanPosition = state.getPacmanPosition()
# Select best actions given the state
distancesToPacman = [manhattanDistance( pos, pacmanPosition ) for pos in newPositions]
if isScared:
bestScore = max( distancesToPacman )
bestProb = self.prob_scaredFlee
else:
bestScore = min( distancesToPacman )
bestProb = self.prob_attack
bestActions = [action for action, distance in zip( legalActions, distancesToPacman ) if distance == bestScore]
# Construct distribution
dist = util.Counter()
for a in bestActions: dist[a] = bestProb / len(bestActions)
for a in legalActions: dist[a] += ( 1-bestProb ) / len(legalActions)
dist.normalize()
return dist
def canKill( pacmanPosition, ghostPosition ):
return manhattanDistance( ghostPosition, pacmanPosition ) <= COLLISION_TOLERANCE
def getFurthestCorner(self, pacPos):
poses = [(1,1), (1, self.height - 2), (self.width - 2, 1), (self.width - 2, self.height - 2)]
dist, pos = max([(manhattanDistance(p, pacPos), p) for p in poses])
return pos
def getDistribution( self, state ):
# Read variables from state
ghostState = state.getGhostState( self.index )
legalActions = state.getLegalActions( self.index )
pos = state.getGhostPosition( self.index )
isScared = ghostState.scaredTimer > 0
speed = 1
if isScared: speed = 0.5
actionVectors = [Actions.directionToVector( a, speed ) for a in legalActions]
newPositions = [( pos[0]+a[0], pos[1]+a[1] ) for a in actionVectors]
pacmanPosition = state.getPacmanPosition()
# Select best actions given the state
distancesToPacman = [manhattanDistance( pos, pacmanPosition ) for pos in newPositions]
if isScared:
bestScore = max( distancesToPacman )
bestProb = self.prob_scaredFlee
else:
bestScore = min( distancesToPacman )
bestProb = self.prob_attack
bestActions = [action for action, distance in zip( legalActions, distancesToPacman ) if distance == bestScore]
# Construct distribution
dist = util.Counter()
for a in bestActions: dist[a] = bestProb / len(bestActions)
for a in legalActions: dist[a] += ( 1-bestProb ) / len(legalActions)
dist.normalize()
return dist
def canKill( pacmanPosition, ghostPosition ):
return manhattanDistance( ghostPosition, pacmanPosition ) <= COLLISION_TOLERANCE
def getFurthestCorner(self, pacPos):
poses = [(1,1), (1, self.height - 2), (self.width - 2, 1), (self.width - 2, self.height - 2)]
dist, pos = max([(manhattanDistance(p, pacPos), p) for p in poses])
return pos
def getDistribution( self, state ):
# Read variables from state
ghostState = state.getGhostState( self.index )
legalActions = state.getLegalActions( self.index )
pos = state.getGhostPosition( self.index )
isScared = ghostState.scaredTimer > 0
speed = 1
if isScared: speed = 0.5
actionVectors = [Actions.directionToVector( a, speed ) for a in legalActions]
newPositions = [( pos[0]+a[0], pos[1]+a[1] ) for a in actionVectors]
pacmanPosition = state.getPacmanPosition()
# Select best actions given the state
distancesToPacman = [manhattanDistance( pos, pacmanPosition ) for pos in newPositions]
if isScared:
bestScore = max( distancesToPacman )
bestProb = self.prob_scaredFlee
else:
bestScore = min( distancesToPacman )
bestProb = self.prob_attack
bestActions = [action for action, distance in zip( legalActions, distancesToPacman ) if distance == bestScore]
# Construct distribution
dist = util.Counter()
for a in bestActions: dist[a] = bestProb / len(bestActions)
for a in legalActions: dist[a] += ( 1-bestProb ) / len(legalActions)
dist.normalize()
return dist