python类trange()的实例源码

utils.py 文件源码 项目:GAN 作者: kunrenzhilu 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def save_imshow_grid(images, logs_dir, filename, shape):
    """
    Plot images in a grid of a given shape.
    """
    pickle.dump(images, open(os.path.join(logs_dir, "image.pk"), "wb"))
    fig = plt.figure(1)
    grid = ImageGrid(fig, 111, nrows_ncols=shape, axes_pad=0.05)

    size = shape[0] * shape[1]
    for i in trange(size, desc="Saving images"):
        grid[i].axis('off')
        grid[i].imshow(images[i])
    Image.fromarray(images[i]).save(os.path.join(logs_dir,str(i)),"jpeg")

    plt.savefig(os.path.join(logs_dir, filename))
deletestudents.py 文件源码 项目:aCloudGuru-DynamoDB 作者: acantril 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def uuidpool(num, tablename): # generate 'num' uuid's, return array
    pool=[]
    for i in trange(num, desc=tablename):
        pool.append(str(uuid.uuid4()))
    return pool
#------------------------------------------------------------------------------
datamodelv3.py 文件源码 项目:aCloudGuru-DynamoDB 作者: acantril 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def uuidpool(num, tablename): # generate 'num' uuid's, return array
    pool=[]
    for i in trange(num, desc=tablename):
        pool.append(str(uuid.uuid4()))
    return pool
#------------------------------------------------------------------------------
examsimulate.py 文件源码 项目:aCloudGuru-DynamoDB 作者: acantril 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def uuidpool(num, tablename): # generate 'num' uuid's, return array
    pool=[]
    for i in trange(num, desc=tablename):
        pool.append(str(uuid.uuid4()))
    return pool
weatherstation_data_populate.py 文件源码 项目:aCloudGuru-DynamoDB 作者: acantril 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def p_table (stations, datapoints): # Populate Table
    with db_r.Table('weatherstation_data').batch_writer() as batch:
        for station in trange(stations, desc='Stations'):
            for datapoint in trange(datapoints, desc='Datapoints'):
                item = item_gen(station)
                batch.put_item(Item=item)
#------------------------------------------------------------------------------
datamodelv4.py 文件源码 项目:aCloudGuru-DynamoDB 作者: acantril 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def uuidpool(num, tablename): # generate 'num' uuid's, return array
    pool=[]
    for i in trange(num, desc=tablename):
        pool.append(str(uuid.uuid4()))
    return pool
#------------------------------------------------------------------------------
datamodelv4.py 文件源码 项目:aCloudGuru-DynamoDB 作者: acantril 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def uuidpool(num, tablename): # generate 'num' uuid's, return array
    pool=[]
    for i in trange(num, desc=tablename):
        pool.append(str(uuid.uuid4()))
    return pool
#------------------------------------------------------------------------------
faster_rcnn_conv5.py 文件源码 项目:tf-Faster-RCNN 作者: kevinjliang 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def train(self):
        """ Run training function. Save model upon completion """
        self.print_log('Training for %d epochs' % self.flags['num_epochs'])

        tf_inputs = (self.x['TRAIN'], self.im_dims['TRAIN'], self.gt_boxes['TRAIN'])

        self.step += 1
        for self.epoch in trange(1, self.flags['num_epochs']+1, desc='epochs'):
            train_order = randomize_training_order(len(self.names['TRAIN']))

            for i in tqdm(train_order):
                feed_dict = create_feed_dict(flags['data_directory'], self.names['TRAIN'], tf_inputs, i)

                # Run a training iteration
                if self.step % (self.flags['display_step']) == 0:
                    # Record training metrics every display_step interval
                    summary = self._record_train_metrics(feed_dict)
                    self._record_training_step(summary)
                else: 
                    summary = self._run_train_iter(feed_dict)
                    self._record_training_step(summary)             

            ## Epoch finished
            # Save model 
            if self.epoch % cfg.CHECKPOINT_RATE == 0: 
                self._save_model(section=self.epoch)
            # Perform validation
            if self.epoch % cfg.VALID_RATE == 0: 
                self.evaluate(test=False)
#            # Adjust learning rate
#            if self.epoch % cfg.TRAIN.LEARNING_RATE_DECAY_RATE == 0:
#                self.lr = self.lr * cfg.TRAIN.LEARNING_RATE_DECAY
#                self.print_log("Learning Rate: %f" % self.lr)
faster_rcnn_resnet50ish.py 文件源码 项目:tf-Faster-RCNN 作者: kevinjliang 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def train(self):
        """ Run training function. Save model upon completion """
        self.print_log('Training for %d epochs' % self.flags['num_epochs'])

        tf_inputs = (self.x['TRAIN'], self.im_dims['TRAIN'], self.gt_boxes['TRAIN'])

        self.step += 1
        for self.epoch in trange(1, self.flags['num_epochs']+1, desc='epochs'):
            train_order = randomize_training_order(len(self.names['TRAIN']))

            for i in tqdm(train_order):
                feed_dict = create_feed_dict(flags['data_directory'], self.names['TRAIN'], tf_inputs, i)

                # Run a training iteration
                if self.step % (self.flags['display_step']) == 0:
                    # Record training metrics every display_step interval
                    summary = self._record_train_metrics(feed_dict)
                    self._record_training_step(summary)
                else: 
                    summary = self._run_train_iter(feed_dict)
                    self._record_training_step(summary)             

            ## Epoch finished
            # Save model 
            if self.epoch % cfg.CHECKPOINT_RATE == 0: 
                self._save_model(section=self.epoch)
            # Perform validation
            if self.epoch % cfg.VALID_RATE == 0: 
                self.evaluate(test=False)
#            # Adjust learning rate
#            if self.epoch % cfg.TRAIN.LEARNING_RATE_DECAY_RATE == 0:
#                self.lr = self.lr * cfg.TRAIN.LEARNING_RATE_DECAY
#                self.print_log("Learning Rate: %f" % self.lr)
MNIST.py 文件源码 项目:tf-Faster-RCNN 作者: kevinjliang 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def process_digits(all_data, all_labels, data_directory, args):
    """ Generate data and saves in the appropriate format """

    for s in range(len(flags['all_names'])):
        split = flags['all_names'][s]
        print('Processing {0} Data'.format(split))
        key = 'train' if split == 'train' else 'eval'

        # Create writer (tf_records) or Image/Annotations/Names directories (PNGs)
        if args[key] == 'tfrecords':
            tf_writer = tf.python_io.TFRecordWriter(data_directory + 'clutteredMNIST_' + split + '.tfrecords')
        elif args[key] == 'PNG':
            make_Im_An_Na_directories(data_directory)
        else:
            raise ValueError('{0} is not a valid data format option'.format(args[key]))

        # Generate data
        for i in trange(flags['nums'][split]):
            # Generate cluttered MNIST image
            im_dims = [im_dims_generator(), im_dims_generator()]
            num_digits = num_digits_generator()
            img, gt_boxes = gen_nCluttered(all_data[s], all_labels[s], im_dims, num_digits)

            # Save data
            if args[key] == 'tfrecords':
                img = np.float32(img.flatten()).tostring()
                gt_boxes = np.int32(np.array(gt_boxes).flatten()).tostring()
                tf_write(img, gt_boxes, [flags['im_dims'], flags['im_dims']], tf_writer)
            elif args[key] == 'PNG':
                fname = split + '_img' + str(i)
                imsave(data_directory + 'Images/' + fname + '.png', np.float32(img))
                np.savetxt(data_directory + 'Annotations/' + fname + '.txt', np.array(gt_boxes), fmt='%i')
                with open(data_directory + 'Names/' + split + '.txt', 'a') as f:
                    f.write(fname + '\n')


###############################################################################
# Image generation functions
###############################################################################
codes.py 文件源码 项目:neural-decoder 作者: Krastanov 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def sample(L, p, samples=1000, cutoff=200):
    '''Repeated single shot corrections for the toric code with perfect measurements.

    Return an array of nb of cycles until failure for a given L and p.'''
    results = []
    for _ in trange(samples, desc='%d; %.2f'%(L,p), leave=False):
        code = ToricCode(L)
        i = 1
        while code.step_error_and_perfect_correction(p) and i<cutoff:
            i+=1
        results.append(i)
    return np.array(results, dtype=int)
benchmark.py 文件源码 项目:deepspeech.pytorch 作者: SeanNaren 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def run_benchmark(input_data):
    print("Running dry runs...")
    for n in trange(args.dry_runs):
        iteration(input_data)

    print("\n Running measured runs...")
    running_time = 0
    for n in trange(args.runs):
        start, end = iteration(input_data)
        running_time += end - start

    return running_time / float(args.runs)
data_loader.py 文件源码 项目:pointer-network-tensorflow 作者: devsisters 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def _maybe_generate_and_save(self, except_list=[]):
    self.data = {}

    for name, num in self.data_num.items():
      if name in except_list:
        tf.logging.info("Skip creating {} because of given except_list {}".format(name, except_list))
        continue
      path = self.get_path(name)

      if not os.path.exists(path):
        tf.logging.info("Creating {} for [{}]".format(path, self.task))

        x = np.zeros([num, self.max_length, 2], dtype=np.float32)
        y = np.zeros([num, self.max_length], dtype=np.int32)

        for idx in trange(num, desc="Create {} data".format(name)):
          n_nodes = self.rng.randint(self.min_length, self.max_length+ 1)
          nodes, res = generate_one_example(n_nodes, self.rng)
          x[idx,:len(nodes)] = nodes
          y[idx,:len(res)] = res

        np.savez(path, x=x, y=y)
        self.data[name] = TSP(x=x, y=y, name=name)
      else:
        tf.logging.info("Skip creating {} for [{}]".format(path, self.task))
        tmp = np.load(path)
        self.data[name] = TSP(x=tmp['x'], y=tmp['y'], name=name)
test_memory_preformance.py 文件源码 项目:deep_rl_vizdoom 作者: mihahauke 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def test_memory(insertions, samples, img_shape, misc_len, batch_size, capacity, img_dtype=np.float32):
    print("image shape:", img_shape)
    print("misc vector lenght:", misc_len)
    print("batchsize:", batch_size)
    print("capacity:", capacity)
    print("image data type:", img_dtype.__name__)
    memory = ReplayMemory(img_shape, misc_len, capacity, batch_size)
    if img_dtype != np.float32:
        s = [(np.random.random(img_shape) * 255).astype(img_dtype), np.random.random(misc_len).astype(np.float32)]
        s2 = [(np.random.random(img_shape) * 255).astype(img_dtype), np.random.random(misc_len).astype(np.float32)]
    else:
        s = [np.random.random(img_shape).astype(img_dtype), np.random.random(misc_len).astype(np.float32)]
        s2 = [np.random.random(img_shape).astype(img_dtype), np.random.random(misc_len).astype(np.float32)]
    a = 0
    r = 1.0
    terminal = False
    for _ in trange(capacity, leave=False, desc="Prefilling memory."):
        memory.add_transition(s, a, s2, r, terminal)

    start = time()
    for _ in trange(insertions, leave=False, desc="Testing insertions speed"):
        memory.add_transition(s, a, s2, r, terminal)
    inserts_time = time() - start

    start = time()
    for _ in trange(samples, leave=False, desc="Testing sampling speed"):
        sample = memory.get_sample()
    sample_time = time() - start

    print("\t{:0.1f} insertions/s. 1k insertions in: {:0.2f}s".format(insertions / inserts_time,
                                                                      inserts_time / insertions * 1000))
    print("\t{:0.1f} samples/s. 1k samples in: {:0.2f}s".format(samples / sample_time, sample_time / samples * 1000))
    print()
async_learner.py 文件源码 项目:deep_rl_vizdoom 作者: mihahauke 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def test(self, episodes_num=None, deterministic=True):
        if episodes_num is None:
            episodes_num = self.test_episodes_per_epoch

        test_start_time = time.time()
        test_rewards = []
        test_actions = []
        test_frameskips = []
        for _ in trange(episodes_num, desc="Testing", file=sys.stdout,
                        leave=False, disable=not self.enable_progress_bar):
            total_reward, actions, frameskips, _ = self.run_episode(deterministic=deterministic, return_stats=True)
            test_rewards.append(total_reward)
            test_actions += actions
            test_frameskips += frameskips

        self.doom_wrapper.reset()
        if self.local_network.has_state():
            self.local_network.reset_state()

        test_end_time = time.time()
        test_duration = test_end_time - test_start_time
        min_score = np.min(test_rewards)
        max_score = np.max(test_rewards)
        mean_score = np.mean(test_rewards)
        score_std = np.std(test_rewards)
        log(
            "TEST: mean: {}, min: {}, max: {}, test time: {}".format(
                green("{:0.3f}±{:0.2f}".format(mean_score, score_std)),
                red("{:0.3f}".format(min_score)),
                blue("{:0.3f}".format(max_score)),
                sec_to_str(test_duration)))
        return test_rewards, test_actions, test_frameskips
trainer.py 文件源码 项目:pytorch-fcn 作者: wkentaro 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def train(self):
        max_epoch = int(math.ceil(1. * self.max_iter / len(self.train_loader)))
        for epoch in tqdm.trange(self.epoch, max_epoch,
                                 desc='Train', ncols=80):
            self.epoch = epoch
            self.train_epoch()
            if self.iteration >= self.max_iter:
                break
gtzan.py 文件源码 项目:gcforest 作者: w821881341 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, cache=None, **kwargs):
        super(GTZAN, self).__init__(**kwargs)
        if kwargs.get('conf') is not None:
            conf = kwargs['conf']
            cache = conf.get('cache', None)
        data_set_path = osp.join(DEFAULT_IMAGEST_BASE, self.data_set)
        self.data_set_path = data_set_path
        self.cache = cache
        X, y = parse_anno_file(data_set_path)
        if cache == 'raw':
            import librosa
            from tqdm import trange
            X_new = np.zeros((len(X), 1, 661500, 1))
            for i in trange(len(X)):
                x,_ = librosa.load(osp.join(DEFAULT_DATA_BASE, X[i]))
                x_len = min(661500, len(x))
                X_new[i,:,:x_len,0] = x[:x_len]
        if cache is not None and cache != 'raw':
            X = self.load_cache_X(X, cache)
            if cache == 'mfcc':
                X_new = np.zeros((len(X), X[0].shape[0], 1280, 1))
                for i, x in enumerate(X):
                    x_len = min(x.shape[1], 1280)
                    X_new[i,:,:x_len,0] = x[:,:x_len]
                X = X_new

        # layout_X
        if self.layout_x == 'rel_path':
            self.X = X
        else:
            self.X = self.init_layout_X(X)
        # layout_y
        self.y = self.init_layout_y(y)
h5_to_tf.py 文件源码 项目:DMNN 作者: magnux 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def export_to_tf(self):
    def make_example(key_idx, subject, action, pose, plen):
        ex = tf.train.Example()
        ex.features.feature["key_idx"].int64_list.value.append(int(key_idx))
        ex.features.feature["subject"].int64_list.value.append(int(subject))
        ex.features.feature["action"].int64_list.value.append(int(action))
        ex.features.feature["plen"].int64_list.value.append(int(plen))
        for sublist in pose.tolist():
            for subsublist in sublist:
                for value in subsublist:
                    ex.features.feature["pose"].float_list.value.append(value)
        return ex

    def write_split(is_training, keys):
        writer = None
        shard = 0
        splitname = 'train' if is_training else 'val'
        print('Transforming "%s" split...' % splitname)
        t = trange(len(keys), dynamic_ncols=True)
        for k in t:
            if writer == None:
                writer = tf.python_io.TFRecordWriter(
                    os.path.join(self.data_path, self.data_set + '_' + splitname + '_shard' + str(shard) + '.tf')
                )
            key_idx, subject, action, pose, plen = self.read_h5_data(k, is_training)
            ex = make_example(key_idx, subject, action, pose, plen)
            writer.write(ex.SerializeToString())
            if ((k + 1) % 4096) == 0:
                writer.close()
                writer = None
                shard += 1
        if writer != None:
            writer.close()

    write_split(True, self.train_keys)
    write_split(False, self.val_keys)
base.py 文件源码 项目:ternarynet 作者: czhu95 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def main_loop(self):
        # some final operations that might modify the graph
        self._init_summary()
        get_global_step_var()   # ensure there is such var, before finalizing the graph
        logger.info("Setup callbacks ...")
        callbacks = self.config.callbacks
        callbacks.setup_graph(self) # TODO use weakref instead?
        logger.info("Initializing graph variables ...")
        self.sess.run(tf.initialize_all_variables())
        self.config.session_init.init(self.sess)
        tf.get_default_graph().finalize()
        self._start_concurrency()

        with self.sess.as_default():
            try:
                self.global_step = get_global_step()
                logger.info("Start training with global_step={}".format(self.global_step))

                callbacks.before_train()
                for epoch in range(self.config.starting_epoch, self.config.max_epoch+1):
                    with timed_operation(
                        'Epoch {}, global_step={}'.format(
                            epoch, self.global_step + self.config.step_per_epoch)):
                        for step in tqdm.trange(
                                self.config.step_per_epoch,
                                **get_tqdm_kwargs(leave=True)):
                            if self.coord.should_stop():
                                return
                            self.run_step()
                            #callbacks.trigger_step()   # not useful?
                            self.global_step += 1
                        self.trigger_epoch()
            except (KeyboardInterrupt, Exception):
                raise
            finally:
                # Do I need to run queue.close?
                callbacks.after_train()
                self.coord.request_stop()
                self.summary_writer.close()
                self.sess.close()
ilsvrc.py 文件源码 项目:ternarynet 作者: czhu95 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def get_training_bbox(bbox_dir, imglist):
        ret = []

        def parse_bbox(fname):
            root = ET.parse(fname).getroot()
            size = root.find('size').getchildren()
            size = map(int, [size[0].text, size[1].text])

            box = root.find('object').find('bndbox').getchildren()
            box = map(lambda x: float(x.text), box)
            #box[0] /= size[0]
            #box[1] /= size[1]
            #box[2] /= size[0]
            #box[3] /= size[1]
            return np.asarray(box, dtype='float32')

        with timed_operation('Loading Bounding Boxes ...'):
            cnt = 0
            import tqdm
            for k in tqdm.trange(len(imglist)):
                fname = imglist[k][0]
                fname = fname[:-4] + 'xml'
                fname = os.path.join(bbox_dir, fname)
                try:
                    ret.append(parse_bbox(fname))
                    cnt += 1
                except KeyboardInterrupt:
                    raise
                except:
                    ret.append(None)
            logger.info("{}/{} images have bounding box.".format(cnt, len(imglist)))
        return ret


问题


面经


文章

微信
公众号

扫码关注公众号